Color Image Registration under Illumination Changes

  • Raúl Montoliu
  • Pedro Latorre Carmona
  • Filiberto Pla
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5856)

Abstract

The estimation of parametric global motion has had a significant attention during the last two decades, but despite the great efforts invested, there are still open issues. One of the most important ones is related to the ability to simultaneously cope with viewpoint and illumination changes while keeping the method accurate. In this paper, a Generalized least squared-based motion estimator model able to cope with large geometric transformations and illumination changes is presented. Experiments are made on a series of images showing that the presented technique provides accurate estimates of the motion and illumination parameters.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bartoli, A.: Groupwise geometric and photometric direct image registration. In: Proceedings of the British Machine Vision Conference, pp. 157–166 (2006)Google Scholar
  2. 2.
    Bartoli, A.: Groupwise geometric and photometric direct image registration. IEEE Transactions on Pattern Analysis and Machine Intelligence 30, 2098–2108 (2008)CrossRefGoogle Scholar
  3. 3.
    Finlayson, G.D., Drew, M.S., Funt, B.V.: Color constancy: generalized diagonal transforms suffice. Journal of the Optical Society of America, A 11, 3011–3019 (1994)CrossRefGoogle Scholar
  4. 4.
    Finlayson, G.D., Hordley, S.D., Xu, R.: Convex programming colour constancy with a diagonal-offset model. In: IEEE ICIP, vol. 3, pp. 948–951 (2005)Google Scholar
  5. 5.
    Gonzalez, R.C., Woods, R.E.: Digital image processing. Prentice-Hall, Englewood Cliffs (2007)Google Scholar
  6. 6.
    Healey, G., Jain, A.: Retrieving multispectral satellite images using physics-based invariant representations. IEEE Transactions on Pattern Analysis and Machine Intelligence 18, 842–848 (1996)CrossRefGoogle Scholar
  7. 7.
    Kaneko, S., Murase, I., Igarashi, S.: Robust image registration by increment sign correlation. Pattern Recognition 35(10), 2223–2234 (2002)MATHCrossRefGoogle Scholar
  8. 8.
    Kaneko, S., Satoh, Y., Igarashi, S.: Using selective correlation coefficient for robust image registration. Pattern Recognition 36(5), 1165–1173 (2003)CrossRefGoogle Scholar
  9. 9.
    Lenz, R., Tran, L.V., Meer, P.: Moment based normalization of color images. In: IEEE 3rd Workshop on multimedia signal processing, pp. 103–108 (1998)Google Scholar
  10. 10.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  11. 11.
    Mindru, F., Tuytelaars, T., Gool, L.V., Moons, T.: Moment invariants for recognition under changing viewpoint and illumination. Computer Vision and Image Understanding 94, 3–27 (2004)CrossRefGoogle Scholar
  12. 12.
    Montoliu, R., Pla, F.: Generalized least squares-based parametric motion estimation. Computer Vision and Image Understanding 113(7), 790–801 (2009)CrossRefGoogle Scholar
  13. 13.
    Shao, L., Brady, M.: Invariant salient regions based image retrieval under viewpoint and illumination variations. J. Vis. Commun. Image R. 17, 1256–1271 (2006)CrossRefGoogle Scholar
  14. 14.
    Torr, P.H.S., Zisserman, A.: Mlesac: A new robust estimator with application to estimating image geometry. Computer Vision and Image Understanding 78, 138–156 (2000)CrossRefGoogle Scholar
  15. 15.
    West, G., Brill, M.H.: Necessary and sufficient conditions for von kries chromatic adaptation to give color constancy. J. Math. Biol. 15, 249–258 (1982)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Wyszecki, G., Stiles, W.S.: Color science. John Wiley & Sons, Chichester (1967)Google Scholar
  17. 17.
    Xingming, Z., Huangyuan, Z.: An illumination independent eye detection algorithm. In: IEEE ICPR, vol. 1, pp. 342–345 (2006)Google Scholar
  18. 18.
    Zitova, B., Flusser, J.: Image registration methods: a survey. Image and Vision Computing 21, 997–1000 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Raúl Montoliu
    • 1
  • Pedro Latorre Carmona
    • 2
  • Filiberto Pla
    • 2
  1. 1.Dept. Arquitectura y Ciéncias de los Computadores 
  2. 2.Dept. Lenguajes y Sistemas InformáticosJaume I UniversityCastellónSpain

Personalised recommendations