Circular Degree Hough Transform

  • Alejandro Flores-Mendez
  • Angeles Suarez-Cervantes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5856)


The Circular Hough Transform (CHT) is probably the most widely used technique for detecting circular shapes within an image. This paper presents a novel variation of CHT which we call the Circular Degree Hough Transform (CDHT). The CDHT showed better performance than CHT for a number of experiments (eye localization, crater detection, etc.) included in this document. The improvement is mainly achieved by considering the orientation of the edges detected.


Hough Transform Circle Detection 


  1. 1.
    Ayala-Ramirez, V., Garcia-Capulin, C.H., Perez-Garcia, A., Sanchez-Yanez, R.E.: Circle detection on images using genetic algorithms. Pattern Recognition Letters 27(6), 652–657 (2006)CrossRefGoogle Scholar
  2. 2.
    Hough, P.V.C.: Methods and Means for Recognizing Complex Patterns. U.S. Patent 3, 069, 654 (1962)Google Scholar
  3. 3.
    Duda, R.O., Hart, P.E.: Use of the Hough Transformation to Detect Lines and Curves in Pictures. Comm. ACM 15, 11–15 (1972)CrossRefGoogle Scholar
  4. 4.
    Kimme, C., Ballard, D., Sklansky, J.: Finding Circles by an Array of Accumulators. Communications of the ACM 18(2), 120–122 (1975)zbMATHCrossRefGoogle Scholar
  5. 5.
    Tsuji, S., Matsumoto, F.: Detection of ellipses by a modified Hough transformation. IEEE Transactions on Computers C-27(8), 777–781 (1978)CrossRefGoogle Scholar
  6. 6.
    Xu, L., Oja, E., Kultanan, P.: A new curve detection method: randomized Hough transform (RHT). Pattern Recognition Letter 11(5), 331–338 (1990)zbMATHCrossRefGoogle Scholar
  7. 7.
    Aguado, A.S., Montiel, E., Nixon, M.S.: On Using Directional Information for Parameter Space Decomposition in Ellipse Detection. Pattern Recognition 28(3), 369–381 (1996)CrossRefGoogle Scholar
  8. 8.
    McLaughlin, R., Alder, M.: The Hough transform versus UpWrite. IEEE Trans, PAMI 20(4), 396–400 (1998)Google Scholar
  9. 9.
    Salamuniccar, G., Loncaric, S.: Open framework for objective evaluation of crater detection algorithms with first test-field subsystem based on MOLA data. Advances in Space Research 42(1), 6–19 (2008)CrossRefGoogle Scholar
  10. 10.
    Benn, D.E., Nixon, M.S., Carter, J.N.: Robust Eye Centre Extraction Using the Hough Transform. In: Bigün, J., Borgefors, G., Chollet, G. (eds.) AVBPA 1997. LNCS, vol. 1206, pp. 3–9. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  11. 11.
    Kaminka, G., Lima, P., Rojas, R. (eds.): RoboCup 2002. LNCS (LNAI), vol. 2752. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  12. 12.
    Nixon, M.S., Aguado, A.S.: Feature Extraction and Image Processing, 2nd edn. Academic Press, London (2007)Google Scholar
  13. 13.
    Flores-Méndez, A.: Crater Marking and Classification Using Computer Vision. In: Sanfeliu, A., Ruiz-Shulcloper, J. (eds.) CIARP 2003. LNCS, vol. 2905, pp. 79–86. Springer, Heidelberg (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Alejandro Flores-Mendez
    • 1
  • Angeles Suarez-Cervantes
    • 1
  1. 1.LIDETEAUniversidad la SalleMéxicoMéxico

Personalised recommendations