Texture Characterization Using a Curvelet Based Descriptor

  • Francisco Gómez
  • Eduardo Romero
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5856)


Feature extraction from images is a key issue in image classification, image representation and content based image retrieval. This paper introduces a new image descriptor, based on the curvelet transform. The proposed descriptor captures edge information from the statistical pattern of the curvelet coefficients in natural images. The image is mapped to the curvelet space and each subband is used for establishing the parameters of a statistical model which captures the subband marginal distributions as well as the dependencies across scales and orientations of the curvelet. Finally, the Kullback−Leibler distance between the statistical parameters is used to measure the distance between images. We demonstrate the effectiveness of the proposed descriptor by classifying a set of texture images, and with a simple nearest neighbour classifier we obtained an accuracy rate of 87%.


texture characterization curvelet transform generalized Gaussian distribution Kullback−Leibler distance 


  1. 1.
    Valerie, R.: Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping. CRC Press, Amsterdam (2000)Google Scholar
  2. 2.
    Randen, T., Hå, J.: Filtering for texture classification: A comparative study. IEEE Trans. Pattern Anal. Mach. Intell. 21(4), 291–310 (1999)CrossRefGoogle Scholar
  3. 3.
    Welland, G.: Beyond Wavelets. Academic Press, San Diego (2003)zbMATHGoogle Scholar
  4. 4.
    Wouwer, G.V.D., Scheunders, P., Dyck, D.V.: Statistical texture characterization from discrete wavelet representations. IEEE Transactions on Image Processing 8, 592–598 (1999)CrossRefGoogle Scholar
  5. 5.
    Kullback, S.: The kullback-leibler distance. The American Statistician (41), 340–341 (1987)Google Scholar
  6. 6.
    Dettori, L., Semler, L.: A comparison of wavelet, ridgelet, and curvelet-based texture classification algorithms in computed tomography. Comput. Biol. Med. 37(4), 486–498 (2007)CrossRefGoogle Scholar
  7. 7.
    Alecu, A., Munteanu, A., Pizurica, A., Cornelis, W.P.J., Schelkens, P.: Information-theoretic analysis of dependencies between curvelet coefficients, pp. 1617–1620 (2006)Google Scholar
  8. 8.
    Sumana, I., Islam, M., Zhang, D., Lu, G.: Content based image retrieval using curvelet transform. In: Proc. of IEEE International Workshop on Multimedia Signal Processing MMSP, pp. 11–16 (2008)Google Scholar
  9. 9.
    Field, D.J.: Scale-invariance and self-similar ‘wavelet’ transforms: an analysis of natural scenes and mammalian visual systems, pp. 151–193. Elsevier-Health Sciences Division (1993)Google Scholar
  10. 10.
    Candes, E., Demanet, L., Donoho, D., Ying, L.: Fast discrete curvelet transforms. Multiscale Modeling and Simulation 5(3), 861–899 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Candes, E.: New multiscale transforms, minimum total variation synthesis: applications to edge-preserving image reconstruction. Signal Processing 82(25), 1519–1543 (2002)zbMATHCrossRefGoogle Scholar
  12. 12.
    Boubchir, L., Fadili, M.J.: Multivariate statistical modeling of images with the curvelet transform. In: Eighth International Conference on Signal Processing and Its Applications - IEEE ISSPA 2005, pp. 747–750 (2005)Google Scholar
  13. 13.
    Do, M., Vetterli, M.: Wavelet-based texture retrieval using generalized gaussian density and kullback-leibler distance. IEEE Transactions on Image Processing 11(2), 146–158 (2002)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Kondra, S., Torre, V.: Texture classification using three circular filters. In: ICVGIP, pp. 429–434 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Francisco Gómez
    • 1
  • Eduardo Romero
    • 1
  1. 1.Bioingenium Research Group - Faculty of MedicineUniversity of ColombiaBogotáColombia

Personalised recommendations