Filter Banks for Hyperspectral Pixel Classification of Satellite Images

  • Olga Rajadell
  • Pedro García-Sevilla
  • Filiberto Pla
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5856)


Satellite hyperspectral imaging deals with heterogenous images containing different texture areas. Filter banks are frequently used to characterize textures in the image performing pixel classification. This filters are designed using different scales and orientations in order to cover all areas in the frequential domain. This work is aimed at studying the influence of the different scales used in the analysis, comparing texture analysis theory with hyperspectral imaging necessities. To pursue this, Gabor filters over complex planes and opponent features are taken into account and also compared in the feature extraction process.


Satellite Image Spectral Band Hyperspectral Image Gabor Filter Complex Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Chang, T., Kuo, C.C.J.: Texture analysis and classification with tree-structured wavelet transform. IEEE Trans. on Geoscience & Remote Sensing 2, 429–441 (1993)Google Scholar
  2. 2.
    Bianconi, F., Fernández, A.: Evaluation of the effects of Gabor filter parametres on texture classification. Patt. Recogn. 40, 3325–3335 (2007)zbMATHCrossRefGoogle Scholar
  3. 3.
    Jaim, A., Healey, G.: A multiscale representation including oppponent color features for texture recognition. IEEE Trans. Image Process. 7, 124–128 (1998)CrossRefGoogle Scholar
  4. 4.
    Shi, M., Healey, G.: Hyperspectral texture recognition using a multiscale opponent representation. IEEE Trans. Geoscience and remote sensing 41, 1090–1095 (2003)CrossRefGoogle Scholar
  5. 5.
    Hughes, G.F.: On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 14, 55–63 (1968)CrossRefGoogle Scholar
  6. 6.
    Landgrebe, D.A.: Signal Theory Methods in Multispectral Remote Sensing. Wiley, Hoboken (2003)CrossRefGoogle Scholar
  7. 7.
    Martínez-Usó, A., Pla, F., Sotoca, J.M., García-Sevilla, P.: Clustering-based Hyperspectral Band selection using Information Measures. IEEE Trans. on Geoscience & Remote Sensing 45(12), 4158–4171 (2007)CrossRefGoogle Scholar
  8. 8.
    Mercier, G., Lennon, M.: On the characterization of hyperspectral texture. IEEE Trans. Inf. Theory 14, 2584–2586 (2002)Google Scholar
  9. 9.
    Petrou, M., García-Sevilla, P.: Image Processing: Dealing with Texture. John Wiley and Sons, Chichester (2006)Google Scholar
  10. 10.
    Plaza, A., Martinez, P., Plaza, J., Perez, R.: Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations. IEEE Trans. Geoscience and remote sensing 43(3), 466–479 (2005)CrossRefGoogle Scholar
  11. 11.
    Rajadell, O., García-Sevilla, P., Pla, F.: Textural features for hyperspectral pixel classification. In: Araujo, H., et al. (eds.) IbPRIA 2009. LNCS, vol. 5524, pp. 497–504. Springer, Heidelberg (2009)Google Scholar
  12. 12.
    Shaw, G., Manolakis, D.: Signal processing for hyperspectral image explotation. IEEE Signal Process. Mag. 19(1), 12 (2002)CrossRefGoogle Scholar
  13. 13.
    Vane, G., Green, R., Chrien, T., Enmark, H., Hansen, E., Porter, W.: The Airborne Visible Infrared Imaging Spectrometer Remote Sens. Environ. 44, 127–143 (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Olga Rajadell
    • 1
  • Pedro García-Sevilla
    • 1
  • Filiberto Pla
    • 1
  1. 1.Depto. Lenguajes y Sistemas InformáticosJaume I UniversityCastellónSpain

Personalised recommendations