Stable Statistics of the Blogograph

  • Mark Goldberg
  • Malik Magdon-Ismail
  • Stephen Kelley
  • Konstantin Mertsalov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5661)

Abstract

The primary focus of this paper is to describe stable statistics of the blogosphere’s evolution which convey information on the social network’s dynamics. In this paper, we present a number of non-trivial statistics that are surprisingly stable and thus can be used as benchmarks to diagnose phase-transitions in the network. We believe that stable statistics can be used to identify anomalous behavior at all levels: that of a node, of a local community, or of the entire network itself. Any substantial change in those stable statistics must alert the researchers and analysts to the need for further investigation. Furthermore, the usage of these or similar statistics that are based solely on the communication dynamics and not on the communication content, allows one to diagnose anomalous behavior with minimal intrusion of privacy.

Keywords

Social networks graph theory blogs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barabási, A., Jeong, J., Nëda, Z., Ravasz, E., Shubert, A., Vicsek, T.: Evolution of the social network of scientific collaborations. Physica A311, 590–614 (2002)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Baumes, J., Goldberg, M.K., Magdon-Ismail, M.: Efficient identification of overlapping communities. In: Kantor, P., Muresan, G., Roberts, F., Zeng, D.D., Wang, F.-Y., Chen, H., Merkle, R.C. (eds.) ISI 2005. LNCS, vol. 3495, pp. 27–36. Springer, Heidelberg (2005)Google Scholar
  3. 3.
    Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data. SIAM Review (to appear, 2009)Google Scholar
  4. 4.
    Goh, K.-I., Eom, Y.-H., Jeong, H., Kahng, B., Kim, D.: Structure and evolution of online social relationships: Heterogeneity in unrestricted discussions. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) 73(6), 066123 (2006)Google Scholar
  5. 5.
    Kossinets, G., Watts, D.J.: Empirical analysis of an evolving social network. Science 311, 88–90 (2006)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Newman, M.E.J.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. USA 98, 404 (2001)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Mark Goldberg
    • 1
  • Malik Magdon-Ismail
    • 1
  • Stephen Kelley
    • 1
  • Konstantin Mertsalov
    • 1
  1. 1.Department of Computer ScienceRensselaer Polytechnic InstituteTroy

Personalised recommendations