Advertisement

GGOS-D Consistent, High-Accuracy Technique-Specific Solutions

  • Peter SteigenbergerEmail author
  • Thomas Artz
  • Sarah Böckmann
  • Rainer Kelm
  • Rolf König
  • Barbara Meisel
  • Horst Müller
  • Axel Nothnagel
  • Sergei Rudenko
  • Volker Tesmer
  • Daniela Thaller
Chapter
Part of the Advanced Technologies in Earth Sciences book series (ATES)

Abstract

Consistent and homogeneous long-time series of the space geodetic techniquesGlobal Positioning System (GPS), Satellite Laser Ranging (SLR), andVery Long Baseline Interferometry (VLBI) provide the basis for thecombination efforts of GGOS-D. For a consistent combination, thedefinition of common standards for parameterization and modeling isessential. These standards and the technique-specific processingoptions of all individual GPS, SLR, and VLBI solutions as well asthe combined SLR and VLBI solutions are discussed.

keywords

Global Positioning System Very Long Baseline Interferometry Satellite Laser Ranging Common Standards 

Notes

Acknowledgment

The efforts of IGS (Dow et al., 2005), ILRS (Pearlman et al., 2002), IVS (Schlüter et al., 2002) are acknowledged. The authors like to thank J. Boehm for providing the ECMWF troposphere delays and coefficients of VMF1. This is publication no. GEOTECH-1283 of the programme GEOTECHNOLOGIEN of BMBF and DFG, Grants 03F0425A, 03F0425C, 03F0425D.

References

  1. Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the International Terrestrial Reference Frame based ontime series of station positions and Earth Orientation Parameters. J. Geophys. Res. 112:B09401, doi: 10.1029/2007JB004949.Google Scholar
  2. Beutler G, Brockmann E, Gurtner W, Hugentobler U, Mervart L, Rothacher M (1994) Extended orbit modeling techniques at the CODE Processing Center of the International GPS Service (IGS): theory and initial results. Manuscr. Geod. 19:367–386.Google Scholar
  3. Boehm J, Niell A, Tregoning P, Schuh H (2006a) Global Mapping Function (GMF): a new empirical mapping function based on numerical weather model data. Geophys. Res. Lett. 33:L07304, doi: 10.1029/2005GL025546.Google Scholar
  4. Boehm J, Werl B, Schuh H (2006b) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J. Geophys. Res. 111:B02406, doi:10.1029/2005JB003629.Google Scholar
  5. Boehm J, Heinkelmann R, Schuh H (2007) Short note: a global model ofpressure and temperature for geodetic applications. J. Geod. 81(10), 679–683, doi:10.1007/s00190-007-0135-3.CrossRefGoogle Scholar
  6. Dach R, Hugentobler U, Fridez P, Meindl M (eds) (2007) Bernese GPS SoftwareVersion 5.0. Astronomical Institute, University of Bern, Bern, Switzerland.Google Scholar
  7. Dow J, Neilan R, Gendt G (2005) The International GPS Service: Celebrating the 10th anniversary and looking to the next decade. Adv. Space. Res. 36(3), 320–326, doi:10.1016/j.asr.2005.05.125.CrossRefGoogle Scholar
  8. Fliegel H, Gallini T (1996) Solar force modeling of Block IIR Global Positioning System satellites. J. Spacecraft Rockets 33(6), 863–866.CrossRefGoogle Scholar
  9. Förste C, Schmidt R, Stubenvoll R, Flechtner F, Meyer U, König R, Neumayer H, Biancale R, Lemoine JM, Bruinsma S, Loyer S, Barthelmes F, Esselborn S (2007) The GeoForschungsZentrum Potsdam/Groupe de Recherche de Gèodèsie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C. J. Geod. 82(6), 331–346, doi:10.1007/s00190-007-0183-8.CrossRefGoogle Scholar
  10. Fritsche M, Dietrich R, Knöfel C, Rülke A, Vey S, Rothacher M, Steigenberger P (2005) Impact of higher-order ionospheric terms on GPS estimates. Geophys. Res. Lett. 32, L23311, doi:10.1029/2005GL024342.Google Scholar
  11. Gendt G, Dick G, Soehne W (1999) GFZ analysis center of IGS – Annual Report 1998. In: Gowey K, Neilan R, Moore A (eds) International GPS Service for Geodynamics 1998 Technical Reports, IGS Central Bureau, Jet PropulsionLaboratory, Pasadena, CA, pp. 79–87.Google Scholar
  12. Gerstl M, Kelm R, Müller H, Ehrnsprerger W (2001) DOGSCS Kombination und Lösung großer Gleichungssysteme. DGFI Interner Bericht NrMG/01/1995/DGFI.Google Scholar
  13. MacMillan D (1995) Atmospheric gradients from very long baseline interferometry observations. Geophys. Res. Lett. 22(9),1041–1044,doi:10.1029/95GL00887.CrossRefGoogle Scholar
  14. Mathews P, Herring T, Buffett B (2002) Modeling of nutation and precession: new nutation series for nonrigid earth and insights into the Earth’s interior. J. Geophys. Res. 107(B4), doi: 10.1029/2001JB000390.Google Scholar
  15. McCarthy D, Petit G (2004) IERS Conventions (2003). IERS Tech Note 32 Verl. Bundesa. Kart., Frankfurt.Google Scholar
  16. Mendes VB, Pavlis EC (2004) High-accuracy zenith delay prediction at optical wavelengths. Geophys. Res. Lett. 31(L14602), doi:10.1029/2004GL020308.Google Scholar
  17. Niell A (1996) Global mapping functions for the atmosphere delay at radio wavelengths. J. Geophys. Res. 101(B2), 3227–3246, doi:10.1029/95JB03048.CrossRefGoogle Scholar
  18. Nothnagel A, Pilhatsch M, Haas R (1995) Investigations of thermal height changes of geodetic VLBI telescopes. In: Lanotte R, Nianco G (eds.), Proceedings of the 10th Working Meeting on European VLBI for Geodesy and Astrometry, Agenzia Spatiale Italiana, Matera, pp. 121–133.Google Scholar
  19. Pearlman MR, Degnan JJ, Bosworth JM (2002) The International Laser Ranging Service. Adv. Space Res. 30(2), 125–143.CrossRefGoogle Scholar
  20. Petrov L (2006) Mark V VLBI Analysis Software Calc/Solve, http://gemini.gsfc.nasa.gov/solve.
  21. Schlüter W, Himwich E, Nothnagel A, Vandenberg N, Whitney A (2002) IVS and its important role in the maintenance of the global reference systems. Adv. Space. Res. 30(2),127–430, doi:10.1016/S0273-1177(02)00278-8.CrossRefGoogle Scholar
  22. Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase center correction model for GPS receiver and satellite antennas. J. Geod. 81(12), 781–798, doi:10.1007/s00190-007-0148-y.CrossRefGoogle Scholar
  23. Skurikhina E (2001) On computation of antenna thermal deformation in VLBI data processing. In: Behrend D, Rius A (eds.), Proceedings of the 15th Working Meeting on European VLBI for Geodesy and Astrometry, Institut d'Estudis Espacials de Catalunya, Consejo Superior de Investi-gaciones Cientificas, Barcelona, pp. 124–130.Google Scholar
  24. Springer T (2000) Modelling and validating orbits and clocks using the Global Positioning System. Geod. Geophys. Arb. in der Schweiz 60, Zürich, Switzerland.Google Scholar
  25. Steigenberger P, Rothacher M, Dietrich R, Fritsche M, Rülke A, Vey S (2006) Reprocessing of a global GPS network. J. Geophys. Res. 111, B05402, doi:10.1029/2005JB003747.Google Scholar
  26. Tesmer V, Kutterer H (2004) An advanced stochastic model for VLBI observations and its application to VLBI data analysis. In: Vandenberg N, Baver K (eds.), International VLBI Service for Geodesy and Astrometry 2004 General Meeting Proceedings, NASA/CP-2004-212255, NASA, Greenbelt, pp. 296–300.Google Scholar
  27. Titov O, Tesmer V, Boehm J (2004) Occam v6.0 software for VLBI data analysis. In: Vandenberg NR, Baver KD (eds.), International VLBI Service for Geodesy and Astrometry 2004 General Meeting Proceedings, NASA/CP-2004-212255, NASA, Greenbelt, pp. 267–271.Google Scholar
  28. Zhang F, Gendt G, Ge M (2007) GPS data processing at GFZ for monitoring thevertical motion of global tide gauge benchmarks: technical report for projects TIGA and SEAL. No. STR07/02 in GeoForschungsZentrum Potsdam Scientific Technical Report.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Peter Steigenberger
    • 1
    Email author
  • Thomas Artz
    • 2
  • Sarah Böckmann
    • 2
  • Rainer Kelm
    • 3
  • Rolf König
    • 4
  • Barbara Meisel
    • 3
  • Horst Müller
    • 3
  • Axel Nothnagel
    • 2
  • Sergei Rudenko
    • 4
  • Volker Tesmer
    • 3
  • Daniela Thaller
    • 5
    • 6
  1. 1.Institute of Astronomical and Physical GeodesyTechnische Universität MünchenMünchenGermany
  2. 2.Institut für Geodäsie und Geoinformation, Universität BonnBonnGermany
  3. 3.Deutsches Geodätisches ForschungsinstitutMünchenGermany
  4. 4.Department 1: Geodesy and Remote SensingHelmholtz Centre Potsdam, GFZ German Research Centre for GeosciencesPotsdamGermany
  5. 5.Department of 1 ‘Geodesy and Remote Sensing’Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum (GFZ)PotsdamGermany
  6. 6.University of Bern, Astronomical InstituteBernSwitzerland

Personalised recommendations