The Release 04 CHAMP and GRACE EIGEN Gravity Field Models

  • Frank FlechtnerEmail author
  • Christoph Dahle
  • Karl Hans Neumayer
  • Rolf König
  • Christoph Förste
Part of the Advanced Technologies in Earth Sciences book series (ATES)


In this article we highlight the advances in gravity field recovery with CHAMP and GRACE, leading to the new GFZ release 04 (RL04) EIGEN (European Improved Gravity field of the Earth by New techniques) models. RL04 consists of time series of monthly CHAMP and GRACE gravity models, pure weekly GRACE solutions and combined static fields from satellite-only and terrestrial data. Additionally a new mean CHAMP-only gravity field model has been generated. It becomes obvious that the improvements in the RL04 background modelling, processing standards and strategies have led to significant improvements in the reprocessed gravity field models. These new RL04 EIGEN models, available for nearly the whole CHAMP and GRACE mission periods, provide an important data base to monitor mass transport and mass distribution phenomena in the system Earth, such as the continental hydrological cycle, ice mass loss in Antarctica and Greenland, ocean mass changes or the ocean surface topography.


EIGEN-gravity models Global gravity field modelling Mass distribution Mass transport 



This is publication no. GEOTECH-1276 of the programme GEOTECHNOLOGIEN of BMBF and DFG, grant 03F0436A.


  1. Carrère L, Lyard F (2003) Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing – comparisons with observations. Geophys. Res. Lett. 30(6), 1275, doi:10.1029/2002GL016473.CrossRefGoogle Scholar
  2. Cheng MK, Shum CK, Tapley BD (1997) Determination of the long-term changes in earth’s gravity field from satellite ranging observations. J. Geophys. Res. 102, B10.Google Scholar
  3. Desai SD (2002) Observing the pole tide with satellite altimetry. J. Geophys. Res. 107, C11, doi:10.1029/2001JC001224.CrossRefGoogle Scholar
  4. Dahle Ch, Flechtner F, Kusche J, Rietbroek R (2008) GFZ EIGEN-GRACE05S (RL04) Weekly Gravity Field Time Series. Proceedings of the 2008 GRACE Science Team Meeting, San Francisco, CA, December 12/13 2008,
  5. Flechtner F (2005a) GFZ Level-2 Processing Standards Document for Product Release 0002. Rev. 1.0, GRACE project documentation, pp. 327–743.Google Scholar
  6. Flechtner F (2005b) GFZ Level-2 Processing Standards Document for Product Release 0003. Rev. 1.1, GRACE project documentation, pp. 327–743.Google Scholar
  7. Flechtner F, Schmidt R, Meyer U (2006) Dealiasing of short-term atmospheric and oceanic mass variations for GRACE. In: Flury J, Rummel R, Reigber Ch, Rothacher M, Boedecker G, Schreiber U (eds.), Observation of the Earth System from Space, Springer, Berlin, pp. 83–97, ISBN 3-540-29520-8.CrossRefGoogle Scholar
  8. Flechtner F (2007a) GFZ Level-2 Processing Standards Document for Product Release 0004. Rev. 1.0, GRACE project documentation, pp. 327–743.Google Scholar
  9. Flechtner F (2007b) AOD1B Product Description Document for Product Releases 01 to 04. Rev. 3.0, GRACE project documentation, pp. 327–750.Google Scholar
  10. Förste C, Flechtner F, Schmidt R, Meyer U, Stubenvoll R, Barthelmes F, König R, Neumayer KH, Rothacher M, Reigber C, et al. (2005) A New High Resolution Global Gravity Field Model Derived from Combination of GRACE and CHAMP Mission and Altimetry/Gravimetry Surface Gravity Data. Poster presented at EGU General Assembly 2005, Vienna, Austria, 24–29, April 2005.Google Scholar
  11. Förste C, Schmidt R, Stubenvoll R, Flechtner F, Meyer U, König R, Neumayer KH, Biancale R, Lemoine JM, Bruinsma S, et al. (2008a) The GeoForschungsZentrum Potsdam/Groupe de Recherche de Gèodésie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C. J. Geod. 82, 331–346, doi:10.1007/s00190-007-0183-8.CrossRefGoogle Scholar
  12. Förste C, Flechtner F, Schmidt R, Stubenvoll R, Rothacher M, Kusche J, Neumayer K.-H, Biancale R, Lemoine J.-M, Barthelmes F, et al. (2008b), EIGEN-GL05C – A new global combined high-resolution GRACE-based gravity field model of the GFZ-GRGS cooperation, General Assembly European Geosciences Union (Vienna, Austria, 2008). Geophysical Research Abstracts, Vol. 10, Abstract No. EGU2008-A-06944.Google Scholar
  13. Förste Ch, Stubenvoll R, Barthelmes R, König R, Raimondo JC, Flechtner F, Kusche J, Dahle Ch, Biancale R, Lemoine JM, et al. (2009) Evaluation of EGM2008 by comparison with other recent global gravity field models. Newton’s Bull. 4, accepted and in press, ISSN 1810–8555.Google Scholar
  14. Forsberg R, Kenyon S (2004) Gravity and geoid in the Arctic region – The Northern gap now filled. Proceedings of the 2nd GOCE User Workshop, ESA SP-569, ESA Publication Division, Noordwijk, The Netherlands.Google Scholar
  15. Hirose N, Fukumori I, Zlotnicki V, Ponte R (2001) High-frequency barotropic response to atmospheric disturbances: Sensitivity to forcing, topography, and friction. J. Geophys. Res. 106, 30987.CrossRefGoogle Scholar
  16. Ihde J, Adam J, Gurtner W, Harsson B. G, Sacher M, Schlüter W, Wöppelmann G (2002) The Height Solution of the European Vertical Reference Network (EUVN). Mitteilungen des BKG, Bd. 25, EUREF Publication No. 11/I, Frankfurt a. M, pp. 53–79.Google Scholar
  17. Ilk KH, Flury J, Rummel R, Schwintzer P, Bosch W, Haas C, Schröter J, Stammer D, Zahel W, Miller H, et al. (2005) Mass Transport and Mass Distribution in the Earth System – Contribution of the New Generation of Satellite Gravity and Altimetry Missions to Geosciences, 2nd ed., Proposal for a German Priority Research Program, GOCE Project Office Germany, Technical University Munich, GeoForschungsZentrum, Potsdam.Google Scholar
  18. Kaula W (1966) Theory of Satellite Geodesy. W. H. Freemann, San Francisco, CA, 1967, reprint by Dover Publications Inc., Mineola, New York, 2000, ISBN 0-486-41465–5.Google Scholar
  19. Kim J (2000) Simulation Study of a Low-Low Satellite-to-Satellite Tracking Mission. Technical Report, University of Texas at Austin, Austin, TX.Google Scholar
  20. Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: Modern insights from FES2004. J. Ocean Dyn. doi:10.1007/s10236-006-0086-x.Google Scholar
  21. McCarthy D, Petit G (2003) IERS Conventions (2003). IERS Technical Note 32, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, 2004, 127 pp, paperback, ISBN 3-89888-884-3.Google Scholar
  22. Milbert D G (1998) Documentation for the GPS benchmark data set of 23-July-1998. IGeS Int. Geoid Serv. Bull. 8, 29–42.Google Scholar
  23. Pavlis NK, Factor JK, Holmes SA (2007) Terrain-related gravimetric quantities computed for the next EGM. Proceedings of the 1st International Symposium of the International Gravity Field Service “Gravity field of the Earth” (Istanbul 2006), Harita Dergisi, year 73, special issue 18, pp. 318–323, General Command of Mapping, Ankara/Turkey, ISSN 1300-5790.Google Scholar
  24. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2008) An Earth Gravitational Model to Degree 2160: EGM2008. Presented at the 2008 General Assembly of the European Geosciences Union, Vienna, Austria, April 13–18, 2008.Google Scholar
  25. Rapp RH (1997) Use of potential coefficient models for geoid undulation determinations using a spherical harmonic representation of the height anomaly/geoid undulation difference. J. Geod. 71, 282–289.CrossRefGoogle Scholar
  26. Reigber C, Jochmann H, Wünsch J, Petrovic S, Schwintzer P, Barthelmes F, Neumayer KH, König R, Förste C, Balmino G, et al. (2004) Earth gravity field and seasonal variability from CHAMP. In: Reigber C, Lühr H, Schwintzer P, Wickert J (eds.), Earth Observation with CHAMP – Results from the Three Years in Orbit, Springer, Berlin, pp. 25–30.Google Scholar
  27. Reigber C, Schmidt R, Flechtner F, König R, Meyer U, Neumayer KH, Schwintzer P, Zhu SY (2005) An earth gravity field model complete to degree and order 150 from GRACE: EIGEN-GRACE02S. J. Geodyn. doi:10.1016/j.jog.2004.07.001.Google Scholar
  28. Reigber C, Schwintzer P, Stubenvoll R, Schmidt R, Flechtner F, Meyer U, König R, Neumayer KH, Förste C, Barthelmes F, et al. (2006) A High Resolution Global Gravity Field Model Combining CHAMP and GRACE Satellite Mission and Surface Data: EIGEN-CG01C. Scientific Technical Report STR06/07, GeoForschungsZentrum, Potsdam.Google Scholar
  29. Rietbroek R, Brunnabend S, Dahle Ch, Flechtner F, Kusche J, Schröter J, Timmermann R (2009) Changes in total ocean mass derived with GRACE, GPS, and ocean modelling with weekly resolution. J. Geophys. Res., 114, C11004, doi:10.1029/2009JC005449.Google Scholar
  30. Schmidt R, Flechtner F, Meyer U, Reigber Ch, Barthelmes F, Förste Ch, Stubenvoll R, König R, Neumayer KH, Zhu S (2006) Static and time-variable gravity from GRACE mission data. In: Flury J, Rummel R, Reigber Ch, Rothacher M, Boedecker G, Schreiber U (eds.), Observation of the Earth System from Space, Springer, Berlin, pp. 115–129, ISBN 3-540-29520-8.CrossRefGoogle Scholar
  31. Schmidt R, Meyer U, Dahle Ch, Flechtner F, Kusche J (2007) Monthly and weekly EIGEN-GRACE05S gravity field solutions for monitoring of mass variations in the earth system. Proceedings of the Second Space for Hydrology Workshop “Surface Water Storage and Runoff: Modeling, In-Situ Data and Remote Sensing”, 12–14 November 2007, Geneva, Switzerland, Benveniste J., et al. (eds.), ESA Publication WPP-280.Google Scholar
  32. Tapley B, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Poole S (2007) The GGM03 Mean Earth Gravity Model from GRACE. Eos Trans. AGU 88(52), Fall Meet. Suppl. Abstract G42A-03.Google Scholar
  33. Thomas M, Sündermann J, Maier-Greiner E (2001) Consideration of ocean tides in an OGCM and impacts on subseasonal to decadal polar motion excitation. Geophys. Res. Lett. 12, 2457.CrossRefGoogle Scholar
  34. Zhu S, Reigber Ch, Koenig R (2004) Integrated adjustment of CHAMP, GRACE, and GPS data. J. Geod. 78(1–2), 103–108.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Frank Flechtner
    • 1
    Email author
  • Christoph Dahle
    • 1
  • Karl Hans Neumayer
    • 1
  • Rolf König
    • 1
  • Christoph Förste
    • 1
  1. 1.Department 1: Geodesy and Remote SensingHelmholtz Centre Potsdam, GFZ German Research Centre for GeosciencesPotsdamGermany

Personalised recommendations