Validation of Satellite Gravity Field Models by Regional Terrestrial Data Sets

  • Johannes IhdeEmail author
  • Herbert Wilmes
  • Jan Müller
  • Heiner Denker
  • Christian Voigt
  • Michael Hosse
Part of the Advanced Technologies in Earth Sciences book series (ATES)


Within the next few years, improved high-resolution global gravity field models are anticipated from the GOCE mission. The expected accuracies are about 1–2 cm in terms of geoid undulations and 1 mGal for gravity, both at a resolution of about 100 km. Then, from a combination of the GOCE based global gravity field models (expected to be available up to spherical harmonic degree and order 250) with regional terrestrial data sets, an accuracy of about 1 cm is expected for the complete geoid spectrum. In this context, accurate and independent terrestrial data sets are essential for the combination process as well as for the validation of the results. Therefore, a regional validation and combination experiment was carried out in Germany as a work package within the framework of the GOCE-GRAND II project. The main goals of this undertaking were the preparation of high-quality validated terrestrial data sets, which can be used for a future external validation of the GOCE products as well as for the combination with the GOCE data. Within extensive measurement campaigns, significant efforts were put into absolute gravity observations with an A-10 instrument at field stations as spot-checks of the existing data base, and into astronomically determined vertical deflections using the digital transportable zenith camera system TZK2-D. In this contribution, gravity data, GPS and levelling control points, astrogeodetic vertical deflections and gravimetric quasigeoid models are utilized as terrestrial data sets for internal cross-validations as well as for the external validation of global satellite gravity field models.


GOCE Gravity field models Validation Terrestrial data sets Gravity data Astrogeodetic vertical deflections GPS and levelling Gravimetric quasigeoid models Validation toolbox Wavelets 


  1. AdV (1995) Deutsches Haupthöhennetz 1992 (DHHN 92). Arbeitsgemeinschaft der Vermessungsverwaltungen der Länder der Bundesrepublik Deutschland (AdV). Bayerisches Landesvermessungsamt München.Google Scholar
  2. Beckers H, Behnke K, Derenbach H, Faulhaber U, Ihde J, Irsen W, Lotze J, Strerath M (2005) Diagnoseausgleichung SAPOS – Homogenisierung des Raumbezugs im System ETRS89 in Deutschland. ZFV 130(4), 203–208.Google Scholar
  3. Bouman J, Koop R (2003) Geodetic methods for calibration of GRACE and GOCE. Space Sci. Rev. 108, 293–303.CrossRefGoogle Scholar
  4. Bürki B, Müller A, Kahle H-G (2004) DIADEM: the new digital astronomical deflection measuring system for high-precision measurements of deflections of the vertical at ETH Zurich. IAG GGSM 2004, Porto, Portugal, CD-ROM Proceedings.Google Scholar
  5. Delouille V, Jansen M, von Sachs R (2003) Second Generation Wavelet Methods for Denoising of Irregularly Spaced Data in Two Dimensions, Institut de Statistique, Université Catholique de Louvain, Belgium.Google Scholar
  6. Delouille V, Jansen M, von Sachs R (2006) Second generation wavelet methods for denoising of irregularly spaced data in two dimensions. Signal Process. 86, 1435–1450.CrossRefGoogle Scholar
  7. Denker H, Voigt C, Müller J, Ihde J, Lux N, Wilmes H (2007) Terrestrial data sets for the validation of GOCE products. In: Observation of the System Earth from Space. Geotechnologien Science Report No. 11, pp. 85–92.Google Scholar
  8. Denker H, Barriot J-P, Barzaghi R, Fairhead D, Forsberg R, Ihde J, Kenyeres A, Marti U, Sarrailh M, Tziavos IN (2009) The development of the European gravimetric Geoid Model EGG07. In: Sideris M (ed.), Observing Our Changing Earth, Proceedings of the IAG General Assembly, Perugia, July 2–13, 2007. IAG Symposia Series No. 133, Springer, New York, pp. 177–186.Google Scholar
  9. ESA (1999) Gravity field and steady-state ocean circulation mission. Reports for Mission Selection, The Four Candidate Earth Explorer Core Missions, ESA SP-1233(1).Google Scholar
  10. Förste C, Schmidt R, Stubenvoll R, Flechtner F, Meyer U, König R, Neumayer H, Biancale R, Lemoine J-M, Bruinsma S, Loyer S, Barthelmes F, Esselborn S (2008a) The GeoForschungsZentrum Potsdam/Groupe de Rechereche de Gèodésie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C. J. Geod. 82(6), 331–346.CrossRefGoogle Scholar
  11. Förste C, Flechtner F, Schmidt R, Stubenvoll R, Rothacher M, Kusche J, Neumayer K-H, Biancale R, Lemoine J-M, Barthelmes F, Bruinsma J, König R, Meyer U (2008b), EIGEN-GL05C – A new global combined high-resolution GRACE-based gravity field model of the GFZ-GRGS cooperation, General Assembly European Geosciences Union (Vienna, Austria 2008), Geophysical Research Abstracts, Vol. 10, Abstract No. EGU2008-A-06944, 2008.Google Scholar
  12. Hirt C (2004) Entwicklung und Erprobung eines digitalen Zenitkamerasystems für die hochpräzise Lotabweichungsbestimmung. Wissenschaftliche Arbeiten der Fachrichtung Vermessungswesen der Universität Hannover Nr. 253.Google Scholar
  13. Hirt C, Flury J (2007) Astronomical-topographic levelling using high-precision astrogeodetic vertical deflections and digital terrain model data. J. Geod. 82(4–5), 231–248.Google Scholar
  14. Hirt C, Seeber G (2007) Accuracy analysis of vertical deflection data observed with the Hannover Digital Zenith Camera System TZK2-D. J. Geod. 82(6), 347–356.CrossRefGoogle Scholar
  15. Hirt C, Feldmann-Westendorff U, Denker H, Flury J, Jahn C-H, Lindau A, Seeber G, Voigt C (2008) Hochpräzise Bestimmung eines astrogeodätischen Quasigeoidprofils im Harz für die Validierung des Quasigeoidmodells GCG05. ZFV 133, 108–119.Google Scholar
  16. Ihde J, Sacher M (2002), EUREF Publication 11/I, Mittelungen des Bundesamtes für Kartographie und Geodäsie, Band 25, Frankfurt/Main, ISBN 3-89888-869-X.Google Scholar
  17. International Centre for Global Earth Models, URL:,2009
  18. Jansen M, Malfait M, Bultheel A (1997) Generalized cross validation for wavelet thresholding. Signal Process. 56, 33–44.CrossRefGoogle Scholar
  19. Jansen M, Nason G, Silverman B (2001) Scattered data smoothing by empirical Bayesian shrinkage of second generation wavelet coefficients. In: Wavelet Applications of Signal and Image Processing IX, Proceedings of SPIE (4478), pp. 87–97.Google Scholar
  20. Jarecki F, Müller J (2007) GOCE gradiometer validation in satellite track cross-overs. Proceedings of the 1st International Symposium of the International Gravity Field Service, “Gravity Field of the Earth”, Harita Dergisi, Special Issue 18, Ankara, Turkey, pp. 223–228.Google Scholar
  21. Kenyeres A, Sacher M, Ihde J, Denker H, Marti U (2006) EUVN_DA: Establishment of a European continental GPS/levelling network. Presentation, 1st International Symposium of the International Gravity Field Service (IGFS), “Gravity Field of the Earth”, Istanbul, Turkey, August 28–September 1, 2006.Google Scholar
  22. Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, Chinn DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH, Wang YM, Williamson RG, Pavlis EC, Rapp RH, Olson TR (1998) The Development of the Joint NASA GSFC and NIMA Geopotential Model EGM96. NASA/TP-1998-206861, Technical Report, NASA, Greenbelt, MD.Google Scholar
  23. Liebsch G, Schirmer U, Ihde J, Denker H, Müller J (2006) Quasigeoidbestimmung für Deutschland. DVW-Schriftenreihe 49, 127–146.Google Scholar
  24. Löcher A, Ilk K-H (2007) A validation procedure for satellite orbits and force function models based on a new balance equation approach. International Association of Geodesy Symposium, Vol. 130, Springer Verlag, New York, pp. 280–287.Google Scholar
  25. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2008) An Earth Gravitational Model to Degree 2160: EGM2008. EGU General Assembly, Vienna, Austria, April 13–18.Google Scholar
  26. Soltanpour A, Nahavandchi H, Featherstone WE (2006) The use of second-generation wavelets to combine a gravimetric quasigeoid model with GPS-levelling data. J. Geod. 80(2), 82–93.CrossRefGoogle Scholar
  27. Sweldens W (1998) The lifting scheme: a construction of second generation wavelets. SIAM J. Math. Anal. 29(2), 511–546.CrossRefGoogle Scholar
  28. Torge W (2001) Geodesy, 3rd ed., W. de Gruyter, New York.CrossRefGoogle Scholar
  29. Torge W, Falk R, Franke A, Reinhart E, Richter B, Sommer M, Wilmes H (1999) Das Deutsche Schweregrundnetz 1994 – Band 1 – DGK B309, München.Google Scholar
  30. Voigt C, Denker H (2007) A Study of High Frequency Terrain Effects in Gravity Field Modelling. Proceedings of the 1st International Symposium of the International Gravity Field Service, “Gravity Field of the Earth”, Harita Dergisi, Special Issue 18, Ankara, Turkey, pp. 342–347.Google Scholar
  31. Voigt C, Denker H, Hirt C (2009) Regional astrogeodetic validation of GPS and levelling data and quasigeoid models. In: Sideris M (ed.), Observing Our Changing Earth, Proceedings of the IAG General Assembly, Perugia, July 2–13, 2007. IAG Symposia Series No. 133, Springer, New York, pp. 413–420.Google Scholar
  32. Wolf KI (2007) Kombination globaler Potentialmodelle mit terrestrischen Schweredaten für die Berechnung der zweiten Ableitungen des Gravitationspotentials in Satellitenbahnhöhe (Diss.). Wiss. Arb. Fachr. Geodäsie u. Geoinformatik der Leibniz Universität Hannover, ISSN 0174-1454, Nr. 264.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Johannes Ihde
    • 1
  • Herbert Wilmes
    • 1
  • Jan Müller
    • 1
  • Heiner Denker
    • 2
  • Christian Voigt
    • 2
  • Michael Hosse
    • 3
  1. 1.Bundesamt für Kartographie und Geodäsie (BKG)Frankfurt am MainGermany
  2. 2.Institut für Erdmessung (IfE), Leibniz Universität HannoverHannoverGermany
  3. 3.Institut für Astronomische und Physikalische Geodäsie (IAPG), Technische Universität MünchenMünchenGermany

Personalised recommendations