Advertisement

GOCE Data Analysis: From Calibrated Measurements to the Global Earth Gravity Field

  • Jan Martin Brockmann
  • Boris Kargoll
  • Ina Krasbutter
  • Wolf-Dieter Schuh
  • Martin Wermuth
Chapter
Part of the Advanced Technologies in Earth Sciences book series (ATES)

Abstract

The goal of this chapter is to describe an in-situ approach to determine a global Earth gravity model and its variance/covariance information on the basis of calibrated measurements from the GOCE mission. As the main characteristics of this procedure, the GOCE data are processed sequentially on a parallel computer system, iteratively via application of the method of preconditioned conjugate gradient multiple adjustment (PCGMA), and in situ via development of the functionals at the actual location and orientation of the gradiometer. We will further explain the adaption of the unknown stochastic model, determined by estimating decorrelation filters and variance components with respect to the GOCE observation types (i.e. SST, SGG, and regularizing prior information).

Keywords

GOCE Gravity field Spherical harmonics Conjugate gradients ARMA filter Ill posed problem Combined adjustment 

Notes

Acknowledgments

Parts of this work were financially supported by the BMBF Geotechnologien program GOCE-GRAND II and the ESA contract No. 18308/04/NL/MM. The computations were performed on the JUMP supercomputer in Jülich. The computing time was granted by the John von Neumann Computing Institute (project 1827).

References

  1. Alkhatib H (2007) On Monte Carlo methods with applications to the current satellite gravity missions. Schriftenreihe des Instituts für Geodäsie und Geoinformation der Universität Bonn No. 7. PhD thesis. http://hss.ulb.uni-bonn.de/diss_online/landw_fak/2007/alkhatib_hamza/
  2. Alkhatib H, Schuh WD (2007) Integration of the Monte Carlo covariance estimation strategy into tailored solution procedures for large-scaled least squares problems. J. Geod. 70, 53–66.Google Scholar
  3. Boxhammer C (2006) Effiziente numerische Verfahren zur sphärischen harmonischen Analyse von Satellitendaten. Mitteilungen aus den Geodätischen Instituten der Rheinischen Friedrich-Wilhelms-Universität Bonn, No. 94. PhD thesis. http://hss.ulb.uni-bonn.de/diss_online/ landw_fak/2006/boxhammer_christian/
  4. Boxhammer C, Schuh WD (2006) GOCE gravity field modeling: Computational aspects – Free kite numbering scheme. In: Rummel R, Reigber C, Rothacher M, Boedecker G, Schreiber U, Flury J (eds.), Observation of the Earth System from Space, Springer, Berlin/Heidelberg.Google Scholar
  5. Bouman J, Rispens S, Gruber T, Koop R, Schrama E, Visser P, Tscherning CC, Veicherts M (2008) Preprocessing of gravity gradients at the GOCE high-level processing facility. J. Geod., doi: 10.1007/s00190-008-0279-9.Google Scholar
  6. Brockmann JM, Schuh WD (2008) Fast variance component estimation in GOCE data processing. In: Mertikas S (ed.), Gravity, Geoid and Earth Observation, IAG Symposia 135, Springer, Berlin.Google Scholar
  7. Ditmar P, Kusche J, Klees R (2003) Computation of spherical harmonic coefficients from gravity gradiometry data to be acquired by the GOCE satellite: regularization issues. J. Geod. 77, 465–477.CrossRefGoogle Scholar
  8. Drinkwater MR, Haagmans R, Muzi D, Popescu A, Floberghagen R, Kern M, Fehringer M (2007) The GOCE gravity mission: ESA’s first core Earth explorer. Proceedings of the 3rd International GOCE User Workshop in Frascati, Italy.Google Scholar
  9. ESA (1999) Gravity field and steady-state ocean circulation mission. Report for Mission Selection of the Four Candidate Earth Explorer Missions. ESA-Document SP-1233(1).Google Scholar
  10. ESA (2006) GOCE Level 2 Product Data Handbook. ESA-Document GO-TN-HPF-GS-0111.Google Scholar
  11. Gerlach C, Földváry L, Svehla D, Gruber T, Wermuth M, Sneeuw N, Frommknecht B, Oberndorfer H, Peters T, Rothacher M, et al. (2003) A CHAMP-only gravity field model from kinematic orbits using the energy integral. Geophys. Res. Lett. 30(20), 2037.CrossRefGoogle Scholar
  12. Hausleitner W (1995) Orbit and SGG Data Simulations. CIGAR III/Phase 2, Final Report, Part 1.Google Scholar
  13. Hestenes M, Stiefel E (1952) Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 49(6), 2379.CrossRefGoogle Scholar
  14. Kaula W (1966) Theory of Satellite Geodesy, Blaisdell, Waltham, MA.Google Scholar
  15. Klees R, Ditmar P, Broersen P (2003) How to handle colored noise in large least-squares problems. J. Geod. 76, 629–640.CrossRefGoogle Scholar
  16. Koch KR, Kusche J (2002) Regularization of the geopotential determination from satellite data by variance components. J. Geod. 76, 259–268.CrossRefGoogle Scholar
  17. Kusche J, Ilk KH (2000) The polar gap problem. In: Sünkel H (ed.), From Eötvös to Milligal, Final Report. ESA/ESTEC Contract No. 13392/98/NL/GD.Google Scholar
  18. Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, Chinn DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH, et al. (1998) The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96. NASA/TP-1998-206861, Greenbelt.Google Scholar
  19. Metzler B, Pail R (2005) GOCE data processing: The spherical cap regularization approach. Stud. Geophys. Geod. 49, 441–462.CrossRefGoogle Scholar
  20. Miggliacchio F, Reguzzoni M, Sansó F, Tscherning CC, Veicherts M (2007) The latest tests of the space-wise approach for GOCE data analysis. Proceedings of the 3rd International GOCE User Workshop in Frascati, Italy.Google Scholar
  21. Plank G (2004) Numerical solution strategies for the GOCE mission by using cluster technologies. PhD thesis. Institut für Navigation und Satellitengeodäsie, TU Graz.Google Scholar
  22. Reigber C (1969) Zur Bestimmung des Gravitationsfeldes der Erde aus Satellitenbeobachtungen. Deutsche Geodätische Kommission, Reihe C, No. 137, Munich.Google Scholar
  23. Schuh WD (1995) SST/SGG tailored numerical solution strategies. CIGAR III/Phase 2, Final Report, Part 2.Google Scholar
  24. Schuh WD (1996) Tailored numerical solution strategies for the global determination of the earth’s gravity field. Mitteilungen der Geodätischen Institute der TU Graz, No. 81, Graz.Google Scholar
  25. Schuh WD (2002) Improved modeling of sgg-data sets by advanced filter strategies. In: Sünkel H (ed.), From Eötvös to mGal+, Final Report. ESA/ESTEC Contract No. 14287/00/NL/DC.Google Scholar
  26. Schuh WD (2003) The processing of band-limited measurements – Filtering techniques in the least squares context and in the presence of data gaps. Space Sci. Rev. 108(1–2), 67–78.CrossRefGoogle Scholar
  27. Schuh WD, Kargoll B (2004) The numerical treatment of the downward continuation problem for the gravity potential. In: Sansó F (ed.), V Hotine-Marussi Symposium on Mathematical Geodesy, IAG Symposia 127, Springer, Berlin, pp. 22–31.CrossRefGoogle Scholar
  28. Schwarz HR (1970) Die Methode der konjugierten Gradienten in der Ausgleichsrechnung. ZfV 95, 130–140.Google Scholar
  29. Siemes C (2008) Digital filtering algorithms for decorrelation within large least squares problems. PhD thesis. http://hss.ulb.uni-bonn.de/diss_online/landw_fak/2008/siemes_christian/
  30. Sneeuw N, van Gelderen M (1997) The polar gap. In: Sansó F, Rummel R (eds.), Geodetic Boundary Value Problems in View of the One Centimeter Geoid, Lecture Notes in Earth Sciences, Vol. 65, Springer, Berlin, pp. 559–568.CrossRefGoogle Scholar
  31. Sneeuw N (2000) A semi-analytical approach to gravity field analysis from satellite observations. Deutsche Geodätische Kommission, Reihe C, No. 527, Munich.Google Scholar
  32. Svehla D, Rothacher M (2002) Kinematic orbit determination of LEOs based on zero or double difference algorithms using simulated and real SST GPS data. In: Adam J, Schwarz KP (eds.), Vistas for Geodesy in the New Millennium, IAG Symposia 125, Springer, Heidelberg, pp. 322–328.Google Scholar
  33. Visser P (2008) GOCE gradiometer: Estimation of biases and scale factors of all six individual accelerometers by precise orbit determination. J. Geod. 83, 69–85.CrossRefGoogle Scholar
  34. Wermuth M (2008) Gravity field analysis from the satellite missions CHAMP and GOCE. PhD thesis. TU Munich.Google Scholar
  35. Yunck TP, Wu SC, Wu JT, Thornton CL (1990) Precise tracking of remote sensing satellites with the global positioning system. IEEE Trans. Geosci. Remote Sens. 28(1), 108–116.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jan Martin Brockmann
    • 1
  • Boris Kargoll
    • 1
  • Ina Krasbutter
    • 1
  • Wolf-Dieter Schuh
    • 1
  • Martin Wermuth
    • 2
    • 3
  1. 1.Institute of Geodesy and Geoinformation, University of BonnBonnGermany
  2. 2.Institute for Astronomical and Physical Geodesy, TU MunichMunichGermany
  3. 3.Deutsches Zentrum für Luft und Raumfahrt (DLR)OberpfaffenhofenGermany

Personalised recommendations