ITG-GRACE: Global Static and Temporal Gravity Field Models from GRACE Data

  • Torsten Mayer-Gürr
  • Annette Eicker
  • Enrico Kurtenbach
  • Karl-Heinz Ilk
Part of the Advanced Technologies in Earth Sciences book series (ATES)


More than 4 years of GRACE data were used to determine the gravity field model ITG-Grace03 s. The solution consists of three parts: a static high resolution model up to a spherical harmonic degree of 180, temporal variations up to degree 40 and the full variance-covariance matrix for the static solution. The temporal gravity field variations are parameterized by continuous basis functions in the time domain. The physical model of the gravity field recovery technique is based on Newton’s equation of motion, formulated as a boundary value problem in the form of a Fredholm type integral equation. The principal characteristic of this method is the use of short arcs of the satellite’s orbit in order to avoid the accumulation of modeling errors and a rigorous consideration of correlations between the range observations in the subsequent adjustment procedure.


GRACE ITG-GRACE 03 Splines Full covariance-matrix Static and temporal gravity field 



The support by BMBF (Bundesministerium fuer Bildung und Forschung) and DFG (Deutsche Forschungsgemeinschaft) within the frame of the Geotechnologien-Programm is gratefully acknowledged.


  1. Eicker A (2008) Gravity Field Refinement by Radial Basis Functions from In-Situ Satellite Data. Dissertation University of Bonn, Schriftenreihe Institut für Geodäsie und Geoinformation, Bonn.Google Scholar
  2. Flechtner F (2005) AOD1B Product Description Document. Technical Report GRACE 327-750, Jet Propulsion Labratory.
  3. Förste C, Flechtner F, Schmidt R, Stubenvoll R, Rothacher M, Kusche J, Neumayer K-H, Biancale R, Lemoine J-M, Barthelmes F, et al. (2008) EIGEN-GL05C – A new global combined high-resolution GRACE-based gravity field model of the GFZ-GRGS cooperation. General Assembly European Geosciences Union (Vienna, Austria). Geophys. Res. Abstr. 10, Abstract No. EGU2008-A-06944.Google Scholar
  4. Ilk KH, Löcher A, Mayer-Gürr T (2006) Do we need new gravity field recovery techniques for the new gravity field satellites? Proceedings of the VI Hotine –Marussi Symposium of Theoretical and Computational Geodesy: Challenge and Role of Modern Geodesy, May 29–June 2, 2006, Wuhan, China.Google Scholar
  5. Koch KR, Kusche J (2001) Regularization of geopotential determination from satellite data by variance components. J. Geod. 76(5), 259–268.CrossRefGoogle Scholar
  6. Le Provost C (2001) Ocean tides. In: Fu LL, Cazenave A (eds.), Satellite Altimetry and Earth Sciences, Springer, Berlin, pp. 267–303.CrossRefGoogle Scholar
  7. Mayer-Gürr T, Ilk KH, Eicker A, Feuchtinger M (2005) ITG-CHAMP01: A CHAMP gravity field model from short kinematical arcs of a one-year observation period. J. Geod. 78, 462–480.CrossRefGoogle Scholar
  8. Mayer-Gürr T (2006) Gravitationsfeldbestimmung aus der Analyse kurzer Bahnbögen am Beispiel der Satellitenmissionen CHAMP und GRACE. Dissertation at the Institute of Theoretical Geodesy, University Bonn, URL:
  9. Mayer-Gürr T, Eicker A, Ilk KH (2006) Gravity field recovery from GRACE-SST data of short arcs. In: Flury J, et al. (eds.), Observation of the Earth System from Space, Springer, Berlin, pp. 131–148.CrossRefGoogle Scholar
  10. Mayer-Gürr T, Eicker A, Ilk KH (2007) ITG-Grace02 s: A GRACE gravity field derived from short arcs of the satellites orbit. Proceedings of the 1st International Symposium of the International Gravity Field Service “Gravity Field of the Earth”, Istanbul, pp. 193–198.Google Scholar
  11. McCarthy DD, Petit G (eds.) (2004) IERS Conventions 2003. Number 32 in IERS Technical Notes. Verlag des Bundesamts fuer Kartographie und Geodäsie, Frankfurt am Main.Google Scholar
  12. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2008) An earth gravitational model to degree 2160: EGM2008. Presented at the 2008 General Assembly of the European Geosciences Union, Vienna, Austria, April 13–18, 2008.Google Scholar
  13. Schmidt M, Fengler M, Mayer-Gürr T, Eicker A, Kusche J, Sanchez L, Han SC (2007) Regional gravity modeling in terms of spherical base functions. J. Geod. 81(1), 17–38.CrossRefGoogle Scholar
  14. Standish EM (1998) JPL Planetary and Lunar Ephemerides DE405/LE405, Jet Propulsion Laboratory, Pasadena.Google Scholar
  15. Tapley BD, Bettadpur S, Watkins M, Reigber Ch (2004) The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett. 31, L09607, doi: 10.1029/2004GL019920.CrossRefGoogle Scholar
  16. Tapley B, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Poole S (2007) The GGM03 mean earth gravity model from GRACE. Eos Trans. AGU 88(52), Fall Meet. Suppl., Abstract G42A-03, 2007.Google Scholar
  17. Thomas JB (1999) An Analysis of Gravity-Field Estimation Based on Intersatellite Dual-1-Way Biased Ranging. Number 98-15 in JPL Publication, Jet Propulsion Laboratory, Pasadena, CA.Google Scholar
  18. Wu SC, Kruizinga G, Bertiger W (2004) Algorithm Theoretical Basis Documents for GRACE Level-1B Data Processing V1.1. Technical Report GRACE 327-741, Jet Propulsion Laboratory, Pasadena, CA.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Torsten Mayer-Gürr
    • 1
  • Annette Eicker
    • 1
  • Enrico Kurtenbach
    • 1
  • Karl-Heinz Ilk
    • 1
  1. 1.Institute of Geodesy and Geoinformation, University of BonnBonnGermany

Personalised recommendations