Using Distance Information for Silhouette Preservation in Mesh Simplification Techniques

  • Susana Mata
  • Luis Pastor
  • Angel Rodríguez
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 24)

Abstract

The goal of this work is to present a multiresolution technique based on Distance Transforms that allows to classify the elements of the mesh according to their proximity to both the internal and the external contours and makes use of this information for weighting the approximation error which will be tolerated during the mesh simplification process. The approach used in this work precomputes silhouettes for a given set of cameras and performs an estimation for any other point of view. The results obtained are evaluated in two ways: visually and using an objective metric that measures the geometrical difference between two polygonal meshes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Xia, J.C., Varshney, A.: Dynamic view-dependent simplification for polygonal models. In: Yagel, R., Nielson, G.M. (eds.) IEEE Visualization 1996, pp. 335–344 (1996)Google Scholar
  2. 2.
    Hoppe, H.: View-dependent refinement of progressive meshes. In: Proceedings of the ACM Conference SIGGRAPH 1997. Computer Graphics Annual Conference Series, pp. 189–198. ACM, New York (1997)Google Scholar
  3. 3.
    Clark, J.H.: Hierarchical geometric models for visible surface algorithms. Communications of the ACM 19(10), 547–554 (1976)MATHCrossRefGoogle Scholar
  4. 4.
    Puppo, E., Scopigno, R.: Simplification, LOD and multiresolution principles and applications. In: Fellner, D., Szirmay-Kalos, L. (eds.) EUROGRAPHICS 1997, vol. 16 (1997) Tutorial Notes PS97 TN4Google Scholar
  5. 5.
    Garland, M.: Multiresolution modeling: Survey and future opportunities. In: STAR Proccedings of Eurographics 1999. Eurographics technical report series, vol. 1. Eurographics Association, Geneva (1999)Google Scholar
  6. 6.
    Luebke, D.P.: A developer’s survey of polygonal simplification algorithms. IEEE Computer Graphics and Applications 21(3), 24–35 (2001)CrossRefGoogle Scholar
  7. 7.
    Luebke, D., Reddy, M., Cohen, J.D., Varshney, A., Watson, B., Huebner, R.: Level of Detail for 3D Graphics. Morgan Kauffmann Publishers, San Francisco (2003)Google Scholar
  8. 8.
    De Floriani, L., Kobbelt, L., Puppo, E.: A survey on data structures for level-of-detail models. In: Dodgson, N.A., Floater, M.S., Sabin, M.A. (eds.) Advances in Multiresolution for Geometric Modelling, pp. 49–74. Springer, Berlin (2005)CrossRefGoogle Scholar
  9. 9.
    Luebke, D., Erikson, C.: View-dependent simplification of arbitrary polygonal enviroments. In: Proceedings of 24th annual conference on Computer graphics and interactive techniques, SIGGRAPH, pp. 199–208. ACM, New York (1997)CrossRefGoogle Scholar
  10. 10.
    Garland, M., Heckbert, P.: Simplifying surfaces with color and texture using quadric error metrics. In: Proceedings of IEEE Visualization VIS 1998, pp. 263–270. IEEE Computer Society, Los Alamitos (1998)Google Scholar
  11. 11.
    Cohen, J., Olano, M., Manocha, D.: Appearance-preserving simplification. In: Proceedings of SIGGRAPH 1998. Annual Conference Series, pp. 115–122 (1998)Google Scholar
  12. 12.
    O’Sullivan, C., Howlett, S., Morvan, Y., McDonnell, R., O’Conor, K.: Perceptually adaptive graphics. In: Schlick, C., Purgathofer, W. (eds.) Eurographics State-of-the-Art Report (EG-STAR), vol. 6, pp. 141–164. Eurographics Association (2004)Google Scholar
  13. 13.
    Cheng, I., Boulanger, P.: A 3D perceptual metric using just-noticeable-difference. In: Proceedings of Eurographics 2005, pp. 97–100 (2005)Google Scholar
  14. 14.
    Lindstrom, P., Turk, G.: Image-driven simplification. ACM Transactions on Graphics (ToG) 19, 204–241 (2000)CrossRefGoogle Scholar
  15. 15.
    Reddy, M.: Perceptually Modulated Level of Detail for Virtual Environments. Ph. D. dissertation, University of Edinburgh (1997)Google Scholar
  16. 16.
    Luebke, D.P.: View-dependent simplification of arbitrary polygonal environments. Ph. D. dissertation, University of North Carolina (1998)Google Scholar
  17. 17.
    Williams, N., Luebke, D., Cohen, J.D., Kelley, M., Schubert, B.: Perceptually guided simplification of lit, textured meshes. In: Proceedings of the Symposium on Interactive 3D Graphics, Session 5: simplification and meshes, pp. 113–121. ACM Press, New York (2003)Google Scholar
  18. 18.
    Raskar, R., Cohen, M.F.: Image precision silhouette edges. In: Proceedings of the Symposium on Interactive 3D Graphics, pp. 135–140 (1999)Google Scholar
  19. 19.
    Sander, P.V., Gu, X., Gortler, S.J., Hoppe, H., Snyder, J.: Silhouette clipping. In: Proceedings of the 27th annual conference on Computer graphics and interactive techniques SIGGRAPH 2000, pp. 327–334 (2000)Google Scholar
  20. 20.
    De Floriani, L., Magillo, P., Puppo, E.: Building and traversing a surface at variable resolution. In: Proceedings of IEEE Visualization 1997, pp. 103–110. IEEE Computer Society Press, Los Alamitos (1997)Google Scholar
  21. 21.
    De Floriani, L., Magillo, P., Puppo, E.: Efficient implementation of multi-triangulations. In: Proceedings of IEEE Visualization VIS 1998, pp. 43–50. IEEE Computer Society Press, Los Alamitos (1998)Google Scholar
  22. 22.
    Geometric Modeling and Computer Graphics Research Group: The MT (Multi-Tessellation) Package (2005), http://gmcg.disi.unige.it/ (retrieved March 27, 2007)
  23. 23.
    Rosenfeld, A., Pfaltz, J.: Sequential operations in digital picture processing. Journal of the Association for Computing Machinery 13(4), 471–491 (1966)MATHGoogle Scholar
  24. 24.
    Rosenfeld, A., Pfaltz, J.: Distance functions on digital pictures. Pattern Recognition 1, 33–61 (1968)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Borgefors, G.: Distance transformation in arbitrary dimensions. Computer Vision, Graphics and Image Processing 27, 321–345 (1984)CrossRefGoogle Scholar
  26. 26.
    Nyström, I.: On Quantitative Shape Analysis of Digital Volume Images. Ph.D. dissertation, Uppsala University (1997)Google Scholar
  27. 27.
    Svensson, S.: Representing and Analyzing 3D Digital Shape Using Distance Information. Ph.D. dissertation, Swedish University of Agricultural Sciences (2001)Google Scholar
  28. 28.
    Jones, M.W., Bærentzen, A., Šrámek, M.: Discrete 3D distance fields: A survey of techniques and applications. IEEE Transactions on Visualization and Computer Graphics 12(4), 581–599 (2006)CrossRefGoogle Scholar
  29. 29.
    Ciampalini, A., Cignoni, P., Montani, C., Scopigno, R.: Multiresolution decimation based on global error. The Visual Computer 13(5), 228–246 (1997)CrossRefGoogle Scholar
  30. 30.
    Aspert, N., Santa-Cruz, D., Ebrahimi, T.: Mesh: Measuring error between surfaces using the hausdorff distance. In: Proceedings of the IEEE International Conference in Multimedia and Expo (ICME), vol. 1, pp. 705–708 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Susana Mata
    • 1
  • Luis Pastor
    • 1
  • Angel Rodríguez
    • 2
  1. 1.Dept. de Arquitectura y Tecnología de Computadores Ciencias de la Computación e Inteligencia ArtificialUniversidad Rey Juan Carlos (URJC)MadridSpain
  2. 2.Dept. de Tecnología FotónicaUniversidad Politécnica de Madrid (UPM)Boadilla del MonteSpain

Personalised recommendations