Image Filtering Based on Locally Estimated Geodesic Functions

  • Jacopo Grazzini
  • Pierre Soille
Part of the Communications in Computer and Information Science book series (CCIS, volume 24)

Abstract

This paper addresses the problem of edge-preserving smoothing of natural images. A novel adaptive approach as a preprocessing stage in feature extraction and/or image segmentation. It performs a weighted convolution by combining both spatial and tonal information in a single similarity measure based on the local calculation of geodesic time functions. Two different strategies are derived for smoothing heterogeneous areas while preserving relevant structures.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jähne, B.: Digital Image Processing: Concepts, Algorithms and Scientific Applications, 4th edn. Springer, Heidelberg (1997)MATHGoogle Scholar
  2. 2.
    Saint-Marc, P., Chen, J., Medioni, G.: Adaptive smoothing: A general tool for early vision. IEEE Trans. Patt. Ana. Mach. Intel. 13, 514–529 (1991)CrossRefGoogle Scholar
  3. 3.
    Winkler, G., Aurich, V., Hahn, K., Martin, A.: Noise reduction in images: some recent edge-preserving methods. Patt. Recogn. Im. Ana. 9, 749–766 (1999)Google Scholar
  4. 4.
    Mrázek, P., Weickert, J., Bruhn, A.: On robust estimation and smoothing with spatial and tonal kernels. In: Klette, R., Kozera, R., Noakes, L., Weickert, J. (eds.) Geometric Properties from Incomplete Data, pp. 335–352. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Sun, T., Neuvo, Y.: Detail-preserving median based filters in image processing. Patt. Recogn. Lett. 15, 341–347 (1994)CrossRefGoogle Scholar
  6. 6.
    Nitzberg, M., Shiota, T.: Nonlinear image filtering with edge and corner enhancement. IEEE Trans. Patt. Ana. Mach. Intel. 14, 826–833 (1992)CrossRefGoogle Scholar
  7. 7.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proc. of ICCV, pp. 839–846 (1998)Google Scholar
  8. 8.
    Barash, D.: A fundamental relationship between bilateral filtering, adaptive smoothing and the nonlinear diffusion equation. IEEE Trans. Patt. Ana. Mach. Intel. 24, 844–847 (2002)CrossRefGoogle Scholar
  9. 9.
    Buades, A., Coll, B., Morel, J.M.: Neighborhood filters and PDE’s. Numer. Math. 105, 1–34 (2006)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE Trans. Patt. Ana. Mach. Intel. 12, 629–639 (1990)CrossRefGoogle Scholar
  11. 11.
    van den Boomgaard, R., van de Weijer, J.: On the equivalence of local-mode finding, robust estimation and mean-shift analysis as used in early vision tasks. In: Proc. of ICPR, vol. 3, pp. 927–930 (2002)Google Scholar
  12. 12.
    Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Patt. Ana. Mach. Intel. 24, 603–619 (2002)CrossRefGoogle Scholar
  13. 13.
    Lantuéjoul, C., Maisonneuve, F.: Geodesic methods in image analysis. Patt. Recogn. 17, 177–187 (1984)MATHCrossRefGoogle Scholar
  14. 14.
    Soille, P.: Generalized geodesy via geodesic time. Patt. Recogn. Lett. 15, 1235–1240 (1994)CrossRefGoogle Scholar
  15. 15.
    Verwer, B., Verbeek, P., Dekker, S.: An efficient uniform cost algorithm applied to distance transforms. IEEE Trans. Patt. Ana. Mach. Intel. 11, 425–429 (1989)CrossRefGoogle Scholar
  16. 16.
    Soille, P.: Morphological Image Analysis: Principles and Applications, 2nd edn. Springer, Heidelberg (2004)Google Scholar
  17. 17.
    Levi, G., Montanari, U.: A grey-weighted skeleton. Inform. Cont. 17, 62–91 (1970)MATHCrossRefGoogle Scholar
  18. 18.
    Ikonen, L., Toivanen, P.: Distance and nearest neighbor transforms on gray-level surfaces. Patt. Recogn. Lett. 28, 604–612 (2007)CrossRefGoogle Scholar
  19. 19.
    Sethian, J.: A fast marching level set method for monotonically advancing fronts. Proc. of Nat. Acad. Sci. 93, 1591–1595 (1996)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Borgefors, G.: Distance transformations in digital images. Comp. Vis. Graph. Im. Proc. 34, 344–371 (1986)CrossRefGoogle Scholar
  21. 21.
    Sumengen, B., Bertelli, L., Manjunath, B.: Fast and adaptive pairwise similarities for graph cuts-based image segmentation. In: Proc. of IEEE POCV (2006)Google Scholar
  22. 22.
    Di Zenzo, S.: A note on the gradient of a multi-image. Comp. Vis. Graph. Im. Proc. 33, 116–125 (1986)Google Scholar
  23. 23.
    Scheunders, P., Sijbers, J.: Multiscale anisotropic filtering of color images. In: Proc. of IEEE ICIP, vol. 3, pp. 170–173 (2001)Google Scholar
  24. 24.
    Lerallut, R., Decencière, E., Meyer, F.: Image filtering using morphological amoebas. Im. Vis. Comput. 25, 395–404 (2007)CrossRefGoogle Scholar
  25. 25.
    Soille, P., Grazzini, J.: Advances in constrained connectivity. In: Coeurjolly, D., Sivignon, I., Tougne, L., Dupont, F. (eds.) DGCI 2008. LNCS, vol. 4992, pp. 423–433. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  26. 26.
    Gomez, G.: Local smoothness in terms of variance. In: Proc. of BMVC, vol. 2, pp. 815–824 (2000)Google Scholar
  27. 27.
    Spira, A., Kimmel, R., Sochen, N.: A short time Beltrami kernel for smoothing images and manifolds. IEEE Trans. Im. Proc. 16, 1628–1636 (2007)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Barash, D., Comaniciu, D.: A common framework for nonlinear diffusion, adaptive smoothing, bilateral filtering and mean shift. Im. Vis. Comput. 22, 73–81 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jacopo Grazzini
    • 1
  • Pierre Soille
    • 1
  1. 1.Spatial Data Infrastructures UnitInstitute for Environment and Sustainability, Joint Research Centre - European CommissionIspra (VA)Italy

Personalised recommendations