Advertisement

Note on Decomposition of Kn,n into (0,j)-prisms

  • Sylwia Cichacz
  • Dalibor Fronček
  • Petr Kovář
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5874)

Abstract

R. Häggkvist proved that every 3-regular bipartite graph of order 2n with no component isomorphic to the Heawood graph decomposes the complete bipartite graph K 6n,6n . In [2] the first two authors established a necessary and sufficient condition for the existence of a factorization of the complete bipartite graph K n,n into certain families of 3-regular graphs of order 2n. In this paper we tackle the problem of decompositions of K n,n into 3-regular graphs some more. We will show that certain families of 3-regular graphs of order 2n decompose the complete bipartite graph \(K_{\frac{3n}{2},\frac{3n}{2}}\).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bermond, J.C., Huang, C., Sotteau, D.: Balanced cycle and circuit designs: Even case. Ars. Combinat. 5, 293–318 (1978)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Cichacz, S., Fronček, D.: Factorization of K n,n into (0,j)-prisms. Information Processing Letters 109, 932–934 (2009)CrossRefMathSciNetGoogle Scholar
  3. 3.
    El-Zanati, S.I., Vanden Eynden, C.: Decompositions of K m,n into cubes. J. Comb. Designs 4, 51–57 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Fronček, D.: Cyclic type decompositions of complete bipartite graphs into hypercubes. Australasian Journal of Combinatorics 25, 201–209 (2002)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Fronček, D.: Oberwolfach rectangular table negotiation problem. Discr. Math. 309, 501–504 (2009)zbMATHCrossRefGoogle Scholar
  6. 6.
    Fronček, D., Kovář, P., Kubesa, M.: Decomposition of complete graphs into C m[2] (submitted)Google Scholar
  7. 7.
    Frucht, R.W., Gallian, J.A.: Labelling Prisms. Ars. Combin. 26, 69–82 (1988)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Häggkvist, R.: Decompositions of complete bipartite graphs. In: Surveys in combinatorics, Norwich. London Math. Soc. Lecture Note Ser., vol. 141, pp. 115–147. Cambridge Univ. Press, Cambridge (1989)Google Scholar
  9. 9.
    Piotrowski, W.-L.: The solution of the bipartite analogue of the Oberwolfach problem. Discr. Math. 97, 339–356 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Sotteau, D.: Decomposition of K m,n (K m,n*) into cycles (circuits) of length 2k. J. Comb. Theory, Ser. B 30, 75–81 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Rosa, A.: On certain valuations of the vertices of a graph. In: Theory of Graphs (Internat. Symposium), Rome, July 1966, pp. 349–355. Gordon and Breach, N. Y. and Dunod Paris (1967)Google Scholar
  12. 12.
    Ringel, G., Lladó, A.S., Serra, O.: Decomposition of complete bipartite graphs into trees. DMAT Research Report 11/96, Univ. Politecnica de CatalunyaGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Sylwia Cichacz
    • 1
  • Dalibor Fronček
    • 2
  • Petr Kovář
    • 3
  1. 1.AGH University of Science and Technology 
  2. 2.University of Minnesota Duluth 
  3. 3.VŠB – Technical University of Ostrava 

Personalised recommendations