Approximating the Max Edge-Coloring Problem

  • Nicolas Bourgeois
  • Giorgio Lucarelli
  • Ioannis Milis
  • Vangelis Th. Paschos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5874)


We study the weighted generalization of the edge coloring problem where the goal is to minimize the sum of the weights of the heaviest edges in the color classes. In particular, we deal with the approximability of this problem on bipartite graphs and trees. We first improve the best known approximation ratios for bipartite graphs of maximum degree \({\it \Delta} \geq 7\). For trees we present a polynomial 3/2-approximation algorithm, which is the first one for any special graph class with an approximation ratio less than the known ratio of two for general graphs. Also for trees, we propose a moderately exponential approximation algorithm that improves the 3/2 ratio with running time much better than that needed for the computation of an optimal solution.


Bipartite Graph Algorithm Tree Approximation Ratio General Graph Input Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Björklund, A., Husfeldt, T.: Inclusion–exclusion algorithms for counting set partitions. In: 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), pp. 575–582. IEEE Computer Society, Los Alamitos (2006)CrossRefGoogle Scholar
  2. 2.
    Cole, R., Ost, K., Schirra, S.: Edge-coloring bipartite multigraphs in O(E logD) time. Combinatorica 21, 5–12 (2001)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    de Werra, D., Demange, M., Escoffier, B., Monnot, J., Paschos, V.T.: Weighted coloring on planar, bipartite and split graphs: Complexity and approximation. Discrete Applied Mathematics 157, 819–832 (2009)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    de Werra, D., Hoffman, A.J., Mahadev, N.V.R., Peled, U.N.: Restrictions and preassignments in preemptive open shop scheduling. Discrete Applied Mathematics 68, 169–188 (1996)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Demange, M., de Werra, D., Monnot, J., Paschos, V.T.: Time slot scheduling of compatible jobs. Journal of Scheduling 10, 111–127 (2007)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Epstein, L., Levin, A.: On the max coloring problem. In: Kaklamanis, C., Skutella, M. (eds.) WAOA 2007. LNCS, vol. 4927, pp. 142–155. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Escoffier, B., Monnot, J., Paschos, V.T.: Weighted coloring: further complexity and approximability results. Information Processing Letters 97, 98–103 (2006)MATHMathSciNetGoogle Scholar
  8. 8.
    Holyer, I.: The NP-completeness of edge-coloring. SIAM Journal on Computing 10, 718–720 (1981)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Kesselman, A., Kogan, K.: Nonpreemptive scheduling of optical switches. IEEE Transactions on Communications 55, 1212–1219 (2007)CrossRefGoogle Scholar
  10. 10.
    König, D.: Über graphen und ihre anwendung auf determinantentheorie und mengenlehre. Mathematische Annalen 77, 453–465 (1916)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kubale, M.: Some results concerning the complexity of restricted colorings of graphs. Discrete Applied Mathematics 36, 35–46 (1992)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Lucarelli, G., Milis, I., Paschos, V.T.: On the maximum edge coloring problem. In: Bampis, E., Skutella, M. (eds.) WAOA 2008. LNCS, vol. 5426, pp. 279–292. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Lucarelli, G., Milis, I., Paschos, V.T.: On the max-weight edge coloring problem. Journal of Combinatorial Optimization (in press)Google Scholar
  14. 14.
    Micali, S., Vazirani, V.V.: An \({O(\sqrt{|V|}|E|)}\) algorithm for finding maximum matching in general graphs. In: 21st Annual IEEE Symposium on Foundations of Computer Science (FOCS 1980), pp. 17–27. IEEE Computer Society, Los Alamitos (1980)CrossRefGoogle Scholar
  15. 15.
    Pemmaraju, S.V., Raman, R.: Approximation algorithms for the max-coloring problem. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1064–1075. Springer, Heidelberg (2005)Google Scholar
  16. 16.
    Pemmaraju, S.V., Raman, R., Varadarajan, K.R.: Buffer minimization using max-coloring. In: 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2004), pp. 562–571 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Nicolas Bourgeois
    • 1
  • Giorgio Lucarelli
    • 2
  • Ioannis Milis
    • 2
  • Vangelis Th. Paschos
    • 1
  1. 1.LAMSADEUniversité Paris-DauphineFrance
  2. 2.Dept. of InformaticsAthens University of Economics and BusinessGreece

Personalised recommendations