Neighborhood Sequences in the Diamond Grid – Algorithms with Four Neighbors

  • Benedek Nagy
  • Robin Strand
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5852)

Abstract

In digital image processing digital distances are useful; distances based on neighborhood sequences are widely used. In this paper the diamond grid is considered, that is the three-dimensional grid of Carbon atoms in the diamond crystal. This grid can be described by four coordinate values using axes of the directions of atomic bonds. In this way the sum of the coordinate values can be either zero or one. An algorithm to compute a shortest path defined by a neighborhood sequence between any two points in the diamond grid is presented. The metric and non-metric properties of some distances based on neighborhood sequences are also discussed. The constrained distance transformation and digital balls obtained by some distance functions are presented.

Keywords

digital geometry non-standard grids neighborhood sequences diamond grid distance transform 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borgefors, G.: Distance Transformations on Hexagonal Grids. Pattern Recognition Letters 9, 97–105 (1989)CrossRefGoogle Scholar
  2. 2.
    Brimkov, V.E., Barneva, R.P.: Analytical Honeycomb Geometry for Raster and Volume Graphics. The Computer Journal 48(2), 180–199 (2005)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Conway, J.H., Sloane, N.J.A., Bannai, E.: Sphere-packings, lattices, and groups. Springer, New York (1988)MATHGoogle Scholar
  4. 4.
    Csébfalvi, B.: Prefiltered Gaussian reconstruction for high-quality rendering of volumetric data sampled on a body-centered cubic grid. IEEE Visualization, 40 (2005)Google Scholar
  5. 5.
    Das, P.P., Chakrabarti, P.P., Chatterji, B.N.: Distance functions in digital geometry. Information Sciences 42, 113–136 (1987)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Deutsch, E.S.: Thinning algorithms on rectangular, hexagonal and triangular arrays. Communications of the ACM 15, 827–837 (1972)CrossRefGoogle Scholar
  7. 7.
    Her, I.: A symmetrical coordinate frame on the hexagonal grid for computer graphics and vision. ASME J. Mech. Design 115, 447–449 (1993)CrossRefGoogle Scholar
  8. 8.
    Her, I.: Geometric transformations on the hexagonal grid. IEEE Trans. on Image Processing 4(9), 1213–1222 (1995)CrossRefGoogle Scholar
  9. 9.
    Her, I.: Description of the F.C.C. lattice geometry through a four-dimensional hypercube. Acta Cryst. A 51, 659–662 (1995)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Klette, R., Rosenfeld, A.: Digital geometry - Geometric methods for digital picture analysis. Morgan Kaufmann Publ., San Francisco (2004)MATHGoogle Scholar
  11. 11.
    Middleton, L., Sivaswamy, J.: Framework for practical hexagonal-image processing. Journal of Electronic Imaging 11, 104–114 (2002)CrossRefGoogle Scholar
  12. 12.
    Nagy, B.: Shortest Paths in Triangular Grids with Neighbourhood Sequences. Journal of Computing and Information Technology 11(2), 111–122 (2003)CrossRefGoogle Scholar
  13. 13.
    Nagy, B.: Distance functions based on neighbourhood sequences. Publicationes Mathematicae Debrecen 63(3), 483–493 (2003)MATHMathSciNetGoogle Scholar
  14. 14.
    Nagy, B.: A Family of Triangular Grids in Digital Geometry. In: Proc. of the 3rd ISPA, International Symposium on Image and Signal Processing and Analysis, Rome, Italy, pp. 101–106 (2003)Google Scholar
  15. 15.
    Nagy, B.: A symmetric coordinate frame for hexagonal networks. In: Proc. of IS-TCS 2004, Theoretical Computer Science - Information Society, Ljubljana, Slovenia, pp. 193–196 (2004)Google Scholar
  16. 16.
    Nagy, B.: Generalized triangular grids in digital geometry. Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 20, 63–78 (2004)MATHGoogle Scholar
  17. 17.
    Nagy, B.: Characterization of digital circles in triangular grid. Pattern Recognition Letters 25(11), 1231–1242 (2004)CrossRefGoogle Scholar
  18. 18.
    Nagy, B.: Distances with Neighbourhood Sequences in Cubic and Triangular Grids. Pattern Recognition Letters 28, 99–109 (2007)CrossRefGoogle Scholar
  19. 19.
    Nagy, B., Strand, R.: Neighborhood sequences in the diamond grid. In: Barneva, R.P., Brimkov, V.E. (eds.) Image Analysis - From Theory to Applications, Research Publishing, Singapore, Chennai, pp. 187–195 (2008)Google Scholar
  20. 20.
    Nagy, B., Strand, R.: A connection between \(\mathbb Z^n\) and generalized triangular grids. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Porikli, F., Peters, J., Klosowski, J., Arns, L., Chun, Y.K., Rhyne, T.-M., Monroe, L., et al. (eds.) ISVC 2008, Part II. LNCS, vol. 5359, pp. 1157–1166. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Nagy, B., Strand, R.: Non-traditional grids embedded in \(\mathbb Z^n\). Int. Journal of Shape Modeling (2009) (accepted for publication)Google Scholar
  22. 22.
    Nagy, B., Strand, R.: Neighborhood sequences in the diamond grid: algorithms with 2 and 3 neighbors. Int. Journal of Imaging Systems and Technology 19(2), 146–157 (2009)CrossRefGoogle Scholar
  23. 23.
    Piper, J., Granum, E.: Computing distance transformations in convex and non-convex domains. Pattern Recognition 20(6), 599–615Google Scholar
  24. 24.
    Rosenfeld, A., Pfaltz, J.L.: Sequential Operations in Digital Picture Processing. Journal of the ACM 13(4), 471–494 (1966)MATHCrossRefGoogle Scholar
  25. 25.
    Rosenfeld, A., Pfaltz, J.L.: Distance Functions on Digital Pictures. Pattern Recognition 1, 33–61 (1968)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Rosenfeld, A.: Digital Geometry: Introduction and Bibliography. Techn. Rep. CS-TR-140/CITR-TR-1 (Digital Geometry Day 1997), Computer Science Dept., The University of Auckland, CITR at Tamaki Campus (1997)Google Scholar
  27. 27.
    Snyder, W.E., Qi, H., Sander, W.A.: A coordinate system for hexagonal pixels. Proc. of SPIE, Medical Imaging Pt.1-2, 716–727 (1999)Google Scholar
  28. 28.
    Strand, R., Nagy, B.: Distances Based on Neighbourhood Sequences in Non-Standard Three-Dimensional Grids. Discrete Applied Mathematics 155(4), 548–557 (2007)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Takahashi, T., Yonekura, T.: Isosurface construction from a data set sampled on a face-centered-cubic lattice. In: Proc. of ICCVG 2002, vol. 2, pp. 754–763 (2002)Google Scholar
  30. 30.
    Yamashita, M., Honda, N.: Distance Functions Defined by Variable Neighborhood Sequences. Pattern Recognition 5(17), 509–513 (1984)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Yamashita, M., Ibaraki, T.: Distances Defined by Neighborhood Sequences. Pattern Recognition 19(3), 237–246 (1986)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Benedek Nagy
    • 1
  • Robin Strand
    • 2
  1. 1.Department of Computer Science, Faculty of InformaticsUniversity of DebrecenDebrecenHungary
  2. 2.Centre for Image AnalysisUppsala UniversityUppsalaSweden

Personalised recommendations