PCIF: An Algorithm for Lossless True Color Image Compression

  • Elena Barcucci
  • Srecko Brlek
  • Stefano Brocchi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5852)


An efficient algorithm for compressing true color images is proposed. The technique uses a combination of simple and computationally cheap operations. The three main steps consist of predictive image filtering, decomposition of data, and data compression through the use of run length encoding, Huffman coding and grouping the values into polyominoes. The result is a practical scheme that achieves good compression while providing fast decompression. The approach has performance comparable to, and often better than, competing standards such JPEG 2000 and JPEG-LS.


Lossless compression predictive coding Huffman codes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barcucci, E., Del Lungo, A., Nivat, M., Pinzani, R.: Reconstructing convex polyominoes from horizontal and vertical projections. Theoretical Computer Science 155, 321–347 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Brocchi, S.: Polyomino Compressed Format (2008),
  3. 3.
    Brocchi, S.: Un algoritmo per la compressione di immagini senza perdita. Thesis, University of Florence (2006)Google Scholar
  4. 4.
    Golomb, S.W.: Polyominoes. Scribner, New York (1965)Google Scholar
  5. 5.
    Howard, P.G., Vitter, J.S.: Fast and efficient lossless image compression. In: Proceedings DCC 1993 Data Compression Conference, pp. 351–360. IEEE Comput. Soc. Press, Los Alamitos (1993)Google Scholar
  6. 6.
    ISO/IEC 15948:2003, Portable Network Graphics (PNG) Specification. W3C RecommendationGoogle Scholar
  7. 7.
    ISO/IEC JTC 1/SC 29/WG 1, ISO/IEC FCD 15444-1, Information Technology - JPEG 2000 Image Coding System (March 2000)Google Scholar
  8. 8.
    Man, H., Docef, A., Kossentini, F.: Performance Analysis of the JPEG 2000 Image Coding Standard. Multimedia Tools and Applications 26, 27–57 (2005)CrossRefGoogle Scholar
  9. 9.
    Matsuda, I., Ozaki, N., Umezu, Y., Itoh, S.: Lossless coding using variable block-size adaptive prediction optimized for each image. In: Proceedings of 13th European Signal Processing Conference, WedAmPO3 (September 2005)Google Scholar
  10. 10.
    Meyer, B., Tischer, P.: Glicbawls - Grey Level Image Compression by Adaptive Weighted Least Squares. In: Proc. of 2001 Data Compression Conf., March 2001, p. 503 (2001)Google Scholar
  11. 11.
    Starosolski, R.: Simple Fast and Adaptive Lossless Image Compression Algorithm. Software: Practice and Experience 37, 65–91 (2006)CrossRefGoogle Scholar
  12. 12.
    Weinberger, M.J., Seroussi, G.: The LOCO-I Lossless Image Compression Algorithm: Principles and Standardization into JPEG-LS. IEEE Trans. of Image Processing 9(8), 1309 (2000)CrossRefGoogle Scholar
  13. 13.
    Wu, X., Memon, N.: Context-Based, Adaptive, Lossless Image Coding. IEEE Transactions on Communications 45(4) (April 1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Elena Barcucci
    • 1
  • Srecko Brlek
    • 2
  • Stefano Brocchi
    • 1
  1. 1.Dipartimento di Sistemi e InformaticaUniversità di FirenzeFirenzeItaly
  2. 2.LaCIMUniversité du Québec à MontréalMontréal (QC)Canada

Personalised recommendations