Sub-pixel Segmentation with the Image Foresting Transform

  • Filip Malmberg
  • Joakim Lindblad
  • Ingela Nyström
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5852)

Abstract

The Image Foresting Transform (IFT) is a framework for image partitioning, commonly used for interactive segmentation. Given an image where a subset of the image elements (seed-points) have been assigned user-defined labels, the IFT completes the labeling by computing minimal cost paths from all image elements to the seed-points. Each image element is then given the same label as the closest seed-point. In its original form, the IFT produces crisp segmentations, i.e., each image element is assigned the label of exactly one seed-point. Here, we propose a modified version of the IFT that computes region boundaries with sub-pixel precision by allowing mixed labels at region boundaries. We demonstrate that the proposed sub-pixel IFT allows properties of the segmented object to be measured with higher precision.

Keywords

Image foresting transform Interactive image segmentation Sub-pixel precision 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boykov, Y., Funka-Lea, G.: Graph cuts and efficient N-D image segmentation. International Journal of Computer Vision 70(2), 109–131 (2006)CrossRefGoogle Scholar
  2. 2.
    Braquelaire, J.-P., Vialard, A.: A new antialiasing approach for image compositing. Visual Computer 13(5), 218–227 (1997)CrossRefGoogle Scholar
  3. 3.
    Ciesielski, K., Udupa, J., Saha, P., Zhuge, Y.: Iterative relative fuzzy connectedness for multiple objects with multiple seeds. Computer Vision and Image Understanding 107(3), 160–182 (2007)CrossRefGoogle Scholar
  4. 4.
    Falcão, A.X., Bergo, F.P.G.: Interactive volume segmentation with differential image foresting transforms. IEEE Transactions on Medical Imaging 23(9), 1100–1108 (2004)CrossRefGoogle Scholar
  5. 5.
    Falcão, A.X., Stolfi, J., Lotufo, R.A.: The image foresting transform: Theory, algorithms, and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(1), 19–29 (2004)CrossRefGoogle Scholar
  6. 6.
    Falcão, A.X., Udupa, J.K., Samarasekera, S., Sharma, S., Hirsch, B.E., Lotufo, R.A.: User-steered image segmentation paradigms: Live wire and Live lane. Graphical Models and Image Processing 60(4), 233–260 (1998)CrossRefGoogle Scholar
  7. 7.
    Grady, L.: Random walks for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(11), 1768–1783 (2006)CrossRefGoogle Scholar
  8. 8.
    Grady, L., Jolly, M.-P.: Weights and topology: A study of the effects of graph construction on 3D image segmentation. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 153–161. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Leemput, K.V., Maes, F., Vandermeulen, D., Suetens, P.: A unifying framework for partial volume segmentation of brain MR images. IEEE Transactions on Medical Imaging 22(1), 105–119 (2003)CrossRefGoogle Scholar
  10. 10.
    Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3D surface construction algorithm. Computer Graphics 21(4), 163–169 (1987)CrossRefGoogle Scholar
  11. 11.
    Lotufo, R.A., Falcão, A.X., Zampirolli, F.: IFT–Watershed from gray-scale marker. In: XV Brazilian Symposium on Computer Graphics and Image Processing, pp. 146–152. IEEE, Los Alamitos (2002)CrossRefGoogle Scholar
  12. 12.
    Olabarriaga, S.D., Smeulders, A.M.: Interaction in the segmentation of medical images: A survey. Medical Image Analysis 5(2), 127–142 (2001)CrossRefGoogle Scholar
  13. 13.
    Sladoje, N., Lindblad, J.: High-precision boundary length estimation by utilizing gray-level information. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(2), 357–363 (2009)CrossRefGoogle Scholar
  14. 14.
    Sladoje, N., Lindblad, J.: Pixel coverage segmentation for improved feature estimation. In: Foggia, P., et al. (eds.) Designing Privacy Enhancing Technologies. LNCS, vol. 5716. Springer, Heidelberg (2009) (in press)Google Scholar
  15. 15.
    Sladoje, N., Nyström, I., Saha, P.K.: Measurements of digitized objects with fuzzy borders in 2D and 3D. Image and Vision Computing 23(2), 123–132 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Filip Malmberg
    • 1
  • Joakim Lindblad
    • 1
  • Ingela Nyström
    • 1
  1. 1.Centre for Image AnalysisUppsala University and Swedish University of Agricultural SciencesSweden

Personalised recommendations