Determining the Trustworthiness of New Electronic Contracts

  • Paul Groth
  • Simon Miles
  • Sanjay Modgil
  • Nir Oren
  • Michael Luck
  • Yolanda Gil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5881)


Expressing contractual agreements electronically potentially allows agents to automatically perform functions surrounding contract use: establishment, fulfilment, renegotiation etc. For such automation to be used for real business concerns, there needs to be a high level of trust in the agent-based system. While there has been much research on simulating trust between agents, there are areas where such trust is harder to establish. In particular, contract proposals may come from parties that an agent has had no prior interaction with and, in competitive business-to-business environments, little reputation information may be available. In human practice, trust in a proposed contract is determined in part from the content of the proposal itself, and the similarity of the content to that of prior contracts, executed to varying degrees of success. In this paper, we argue that such analysis is also appropriate in automated systems, and to provide it we need systems to record salient details of prior contract use and algorithms for assessing proposals on their content. We use provenance technology to provide the former and detail algorithms for measuring contract success and similarity for the latter, applying them to an aerospace case study.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aerogility (2009),
  2. 2.
    IST CONTRACT project (2009),
  3. 3.
    Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Machine Learning 6, 37–66 (1991)Google Scholar
  4. 4.
    Boella, G., van der Torre, L.W.N.: Regulative and constitutive norms in normative multiagent systems. In: Principles of Knowledge Representation and Reasoning: Proceedings of the Ninth International Conference (KR 2004), pp. 255–266 (2004)Google Scholar
  5. 5.
    Castelfranchi, C.: Prescribed mental attitudes in goal-adoption and norm-adoption. Artificial Intelligence and Law 7(1), 37–50 (1999)CrossRefGoogle Scholar
  6. 6.
    Dignum, V., Meyer, J.J., Dignum, F., Weigand, H.: Formal specification of interaction in agent societies. In: Proceedings of the Second Goddard Workshop on Formal Approaches to Agent Based Systems, pp. 37–52 (2002)Google Scholar
  7. 7.
    Gambetta, D.: Can we trust trust? In: Trust: Making and Breaking Cooperative Relations, pp. 213–237. Basil Blackwell, Malden (1988)Google Scholar
  8. 8.
    Gil, Y., Artz, D.: Towards content trust of web resources. Journal of Web Semantics 5(4), 227–239 (2007)Google Scholar
  9. 9.
    Governatori, G.: Representing business contracts in ruleml. International Journal of Cooperative Information Systems 14(2-3), 181–216 (2005)CrossRefGoogle Scholar
  10. 10.
    Grossi, D.: Designing Invisible Handcuffs. PhD thesis, Dutch Research School for Information and Knowledge Systems (2007)Google Scholar
  11. 11.
    Guerin, F., Pitt, J.: Proving properties of open agent systems. In: The First International Joint Conference on Autonomous Agents & Multiagent Systems (AAMAS 2002), pp. 557–558 (2002)Google Scholar
  12. 12.
    Jones, A.J.I., Sergot, M.: A formal characterisation of institutionalised power. Journal of the IGPL 3, 427–443 (1996)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Miles, S., Groth, P., Munroe, S., Moreau, L.: Prime: A methodology for developing provenance-aware applications. ACM Transactions on Software Engineering and Methodology (June 2009)Google Scholar
  14. 14.
    Moreau, L., Groth, P., Miles, S., Vazquez, J., Ibbotson, J., Jiang, S., Munroe, S., Rana, O., Schreiber, A., Tan, V., Varga, L.: The provenance of electronic data. Communications of the ACM 51(4), 52–58 (2008)CrossRefGoogle Scholar
  15. 15.
    Moreau, L., Plale, B., Miles, S., Goble, C., Missier, P., Barga, R., Simmhan, Y., Futrelle, J., McGrath, R.E., Myers, J., Paulson, P., Bowers, S., Ludaescher, B., Kwasnikowska, N., Van den Bussche, J., Ellkvist, T., Freire, J., Groth, P.: Open Provenance Model (2009),
  16. 16.
    Oren, N., Panagiotidi, S., Vazquez-Salceda, J., Modgil, S., Luck, M., Miles, S.: Towards a formalisation of electronic contracting environments. In: Proceedings of the Workshop on Coordination, Organization, Institutions and Norms in Agent Systems at AAAI 2008, COIN 2008 (2008)Google Scholar
  17. 17.
    Panagiotidi, S., Alvarez, S., Vazquez, J., Oren, N., Ortega, S., Confalonieri, R., Jakob, M., Biba, J., Solanki, M., Willmott, S.: Contracting language syntax and semantics specification (2009),
  18. 18.
    Ruohomaa, S., Kutvonen, L.: Trust management survey. In: Herrmann, P., Issarny, V., Shiu, S.C.K. (eds.) iTrust 2005. LNCS, vol. 3477, pp. 77–92. Springer, Heidelberg (2005)Google Scholar
  19. 19.
    Sabater, J., Sierra, C.: Review on computational trust and reputation models. Artificial Intelligence Review 24(1), 33–60 (2005)zbMATHCrossRefGoogle Scholar
  20. 20.
    Simmhan, Y., Plale, B., Gannon, D.: A survey of data provenance in e-science. SIGMOD Record 34(3), 31–36 (2005)CrossRefGoogle Scholar
  21. 21.
    van der Torre, L., Tan, Y.: Contextual deontic logic. In: Bonzon, P., Cavalcanti, M., Nossum, R. (eds.) Formal Aspects of Context, pp. 143–160. Kluwer Academic Publishers, Dordrecht (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Paul Groth
    • 1
  • Simon Miles
    • 2
  • Sanjay Modgil
    • 2
  • Nir Oren
    • 2
  • Michael Luck
    • 2
  • Yolanda Gil
    • 1
  1. 1.Information Sciences InstituteUniversity of Southern CaliforniaUSA
  2. 2.Department of Computer ScienceKing’s College LondonUK

Personalised recommendations