Advertisement

Engineering Time-Expanded Graphs for Faster Timetable Information

  • Daniel Delling
  • Thomas Pajor
  • Dorothea Wagner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5868)

Abstract

We present an extension of the well-known time-expanded approach for timetable information. By remodeling unimportant stations, we are able to obtain faster query times with less space consumption than the original model. Moreover, we show that our extensions harmonize well with speed-up techniques whose adaption to timetable networks is more challenging than one might expect.

Keywords

Short Path Road Network Query Time Query Performance Railway Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bauer, R., Delling, D.: SHARC: Fast and Robust Unidirectional Routing. In: Munro, I., Wagner, D. (eds.) Proceedings of the 10th Workshop on Algorithm Engineering and Experiments (ALENEX 2008), pp. 13–26. SIAM, Philadelphia (2008)Google Scholar
  2. 2.
    Bauer, R., Delling, D., Wagner, D.: Experimental Study on Speed-Up Techniques for Timetable Information Systems. In: Liebchen, C., Ahuja, R.K., Mesa, J.A. (eds.) Proceedings of the 7th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS 2007). Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), pp. 209–225. Schloss Dagstuhl, Germany (2007)Google Scholar
  3. 3.
    Delling, D., Giannakopoulou, K., Wagner, D., Zaroliagis, C.: Timetable Information Updating in Case of Delays: Modeling Issues. Technical Report 133, Arrival Technical Report (2008)Google Scholar
  4. 4.
    Delling, D., Pajor, T., Wagner, D.: Engineering Time-Expanded Graphs for Faster Timetable Information. In: Proceedings of the 8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS 2008), Dagstuhl Seminar Proceedings. Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany (September 2008)Google Scholar
  5. 5.
    Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering Route Planning Algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large and Complex Networks. LNCS, vol. 5515, pp. 117–139. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Dijkstra, E.W.: A Note on Two Problems in Connexion with Graphs. Numerische Mathematik 1, 269–271 (1959)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road Networks. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Goldberg, A.V., Harrelson, C.: Computing the Shortest Path: A* Search Meets Graph Theory. In: Proceedings of the 16th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA 2005), pp. 156–165 (2005)Google Scholar
  9. 9.
    Goldberg, A.V., Kaplan, H., Werneck, R.F.: Better Landmarks Within Reach. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 38–51. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Goldberg, A.V., Werneck, R.F.: Computing Point-to-Point Shortest Paths from External Memory. In: Proceedings of the 7th Workshop on Algorithm Engineering and Experiments (ALENEX 2005), pp. 26–40. SIAM, Philadelphia (2005)Google Scholar
  11. 11.
    Hart, P.E., Nilsson, N., Raphael, B.: A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics 4, 100–107 (1968)CrossRefGoogle Scholar
  12. 12.
    Hilger, M.: Accelerating Point-to-Point Shortest Path Computations in Large Scale Networks. Master’s thesis, Technische Universität Berlin (2007)Google Scholar
  13. 13.
    Köhler, E., Möhring, R.H., Schilling, H.: Acceleration of Shortest Path and Constrained Shortest Path Computation. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 126–138. Springer, Heidelberg (2005)Google Scholar
  14. 14.
    Lauther, U.: An Extremely Fast, Exact Algorithm for Finding Shortest Paths in Static Networks with Geographical Background, vol. 22, pp. 219–230. IfGI prints (2004)Google Scholar
  15. 15.
    Müller-Hannemann, M., Schnee, M.: Finding All Attractive Train Connections by Multi-Criteria Pareto Search. In: Geraets, F., Kroon, L.G., Schoebel, A., Wagner, D., Zaroliagis, C.D. (eds.) Railway Optimization 2004. LNCS, vol. 4359, pp. 246–263. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Müller–Hannemann, M., Schnee, M., Frede, L.: Efficient On-Trip Timetable Information in the Presence of Delays. In: Proceedings of the 8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS 2008), Dagstuhl Seminar Proceedings. Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany (September 2008)Google Scholar
  17. 17.
    Pajor, T.: Goal Directed Speed-Up Techniques for Shortest Path Queries in Timetable Networks, Student Research Project (January 2008)Google Scholar
  18. 18.
    Pellegrini, F.: SCOTCH: Static Mapping, Graph, Mesh and Hypergraph Partitioning, and Parallel and Sequential Sparse Matrix Ordering Package (2007)Google Scholar
  19. 19.
    Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.: Experimental Comparison of Shortest Path Approaches for Timetable Information. In: Proceedings of the 6th Workshop on Algorithm Engineering and Experiments (ALENEX 2004), pp. 88–99. SIAM, Philadelphia (2004)Google Scholar
  20. 20.
    Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.: Efficient Models for Timetable Information in Public Transportation Systems. ACM Journal of Experimental Algorithmics 12, Article 2.4 (2007)Google Scholar
  21. 21.
    Sanders, P., Schultes, D.: Engineering Highway Hierarchies. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 804–816. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Schulz, F., Wagner, D., Weihe, K.: Dijkstra’s Algorithm On-Line: An Empirical Case Study from Public Railroad Transport. In: Vitter, J.S., Zaroliagis, C.D. (eds.) WAE 1999. LNCS, vol. 1668, pp. 110–123. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Daniel Delling
    • 1
  • Thomas Pajor
    • 1
  • Dorothea Wagner
    • 1
  1. 1.Department of Computer ScienceUniversity of KarlsruheKarlsruheGermany

Personalised recommendations