Shunting for Dummies: An Introductory Algorithmic Survey

  • Michael Gatto
  • Jens Maue
  • Matúš Mihalák
  • Peter Widmayer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5868)

Abstract

In this survey we present a selection of commonly used and new train classification methods from an algorithmic perspective.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hansmann, R.S., Zimmermann, U.T.: Optimal sorting of rolling stock at hump yards. In: Mathematics - Key Technology for the Future: Joint Projects Between Universities and Industry. Springer, Heidelberg (2007)Google Scholar
  2. 2.
    Di Stefano, G., Maue, J., Modelski, M., Navarra, A., Nunkesser, M., van den Broek, J.: Models for rearranging train cars. Technical Report TR-0089, ARRIVAL (2007)Google Scholar
  3. 3.
    Knuth, D.E.: The Art of Computer Programming, 3rd edn. vol. 1. Addison-Wesley, Reading (1997)Google Scholar
  4. 4.
    Siddiqee, M.W.: Investigation of sorting and train formation schemes for a railroad hump yard. In: Proceedings of the 5th International Symposium on the Theory of Traffic Flow and Transportation, pp. 377–387 (1972)Google Scholar
  5. 5.
    Jacob, R., Márton, P., Maue, J., Nunkesser, M.: Multistage methods for freight train classification. Networks (2009)Google Scholar
  6. 6.
    Dahlhaus, E., Horak, P., Miller, M., Ryan, J.F.: The train marshalling problem. Discrete Applied Mathematics 103(1-3), 41–54 (2000)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Maue, J., Nunkesser, M.: Evaluation of computational methods for freight train classification schedules. Technical Report TR-0184, ARRIVAL (2009)Google Scholar
  8. 8.
    Jacob, R., Marton, P., Maue, J., Nunkesser, M.: Multistage methods for freight train classification. In: Proceedings of the 7th Workshop on Algorithmic Methods and Models for Optimization of Railways (ATMOS), IBFI Schloss Dagstuhl, pp. 158–174 (2007)Google Scholar
  9. 9.
    Krell, K.: Grundgedanken des Simultanverfahrens. ETR RT 22, 15–23 (1962)Google Scholar
  10. 10.
    Daganzo, C.F.: Static blocking at railyards: Sorting implications and track requirements. Transportation Science 20(3), 189–199 (1986)CrossRefGoogle Scholar
  11. 11.
    Flandorffer, H.: Vereinfachte Güterzugbildung. ETR RT 13, 114–118 (1953)Google Scholar
  12. 12.
    Pentinga, K.J.: Teaching simultaneous marshalling. The Railway Gazette (1959)Google Scholar
  13. 13.
    Daganzo, C.F., Dowling, R.G., Hall, R.W.: Railroad classification yard throughput: The case of multistage triangular sorting. Transportation Research, Part A 17(2), 95–106 (1983)CrossRefGoogle Scholar
  14. 14.
    Dahlhaus, E., Manne, F., Miller, M., Ryan, J.: Algorithms for combinatorial problems related to train marshalling. In: Proceedings of the Eleventh Australasian Workshop on Combinatorial Algorithms (AWOCA), pp. 7–16 (2000)Google Scholar
  15. 15.
    Márton, P., Maue, J., Nunkesser, M.: An improved classification procedure for the hump yard Lausanne Triage. In: Proceedings of the 9th Workshop on Algorithmic Methods and Models for Optimization of Railways (ATMOS), Wadern, Germany, IBFI Schloss Dagstuhl (2009)Google Scholar
  16. 16.
    Cicerone, S., D’Angelo, G., Stefano, G.D., Frigioni, D., Navarra, A.: Robust algorithms and price of robustness in shunting problems. In: Proceedings of the 7th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS), Wadern, Germany, IBFI Schloss Dagstuhl, pp. 175–190 (2007)Google Scholar
  17. 17.
    Cicerone, S., D’Angelo, G., Di Stefano, G., Frigioni, D., Navarra, A., Schachtebeck, M., Schöbel, A.: Recoverable robustness in shunting and timetabling. In: Ahuja, R.K., Möhring, R.H., Zaroliagis, C.D. (eds.) Robust and Online Large-Scale Optimization. LNCS, vol. 5868, pp. 28–60. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Liebchen, C., Lübbecke, M., Möhring, R.H., Stiller, S.: Recoverable robustness. Technical Report TR-0066, ARRIVAL (2007)Google Scholar
  19. 19.
    Liebchen, C., Lüebbecke, M., Möhring, R.H., Stiller, S.: The concept of recoverable robustness, linear programming recovery, and railway applications. In: Ahuja, R.K., Möhring, R.H., Zaroliagis, C.D. (eds.) Robust and Online Large-Scale Optimization. LNCS, vol. 5868, pp. 1–27. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Even, S., Itai, A.: Queues, stacks and graphs. In: Proceedings of an International Symposium on the Theory of Machines and Computations, pp. 71–86 (1971)Google Scholar
  21. 21.
    Tarjan, R.: Sorting using networks of queues and stacks. Journal of the ACM 19(2), 341–346 (1972)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Pratt, V.R.: Computing permutations with double-ended queues, parallel stacks and parallel queues. In: Proceedings of the fifth annual ACM symposium on Theory of computing (STOC), pp. 268–277 (1973)Google Scholar
  23. 23.
    Bóna, M.: A survey of stack-sorting disciplines. The Electronic Journal of Combinatorics 9(2) (2003)Google Scholar
  24. 24.
    König, F.G., Lübbecke, M.E.: Sorting with complete networks of stacks. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 895–906. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  25. 25.
    Blasum, U., Bussieck, M.R., Hochstättler, W., Moll, C., Scheel, H.H., Winter, T.: Scheduling trams in the morning. Mathematical Methods of Operations Research 49(1), 137–148 (1999)MATHMathSciNetGoogle Scholar
  26. 26.
    Winter, T., Zimmermann, U.T.: Real-time dispatch in storage yards. Annals of Operations Research 96(1-4), 287–315 (2000)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Di Stefano, G., Koči, M.L.: A graph theoretical approach to the shunting problem. Electronic Notes in Theoretical Computer Science 92, 16–33 (2004)CrossRefGoogle Scholar
  28. 28.
    Dilworth, R.P.: A decomposition theorem for partially ordered sets. The Annals of Mathematics 51(1), 161–166 (1950)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Di Stefano, G., Krause, S., Lübbecke, M.E., Zimmermann, U.T.: On minimum k-modal partitions of permutations. Journal of Discrete Algorithms 6, 381–392 (2008)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Gavril, F.: Algorithms for a maximum clique and a maximum independent set of a circle graph. Networks 3(3), 261–273 (1973)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Demange, M., Di Stefano, G., Leroy-Beaulieu, B.: Online bounded coloring of permutation and overlap graphs. Electronic Notes in Discrete Mathematics 30, 213–218 (2008); (Proceedings of the IV Latin-American Algorithms, Graphs, and Optimization Symposium (LAGOS))CrossRefGoogle Scholar
  32. 32.
    Leroy-Beaulieu, B.: Some coloring and walking problems in graphs. PhD thesis, Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland (2008)Google Scholar
  33. 33.
    Demange, M., Di Stefano, G., Leroy-Beaulieu, B.: On the online track assignment problem. Technical report, ARRIVAL (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Michael Gatto
    • 1
  • Jens Maue
    • 1
  • Matúš Mihalák
    • 1
  • Peter Widmayer
    • 1
  1. 1.Institute of Theoretical Computer ScienceETH ZurichSwitzerland

Personalised recommendations