Advertisement

Efficient Timetable Information in the Presence of Delays

  • Matthias Müller-Hannemann
  • Mathias Schnee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5868)

Abstract

The search for train connections in state-of-the-art commercial timetable information systems is based on a static schedule. Unfortunately, public transportation systems suffer from delays for various reasons. Thus, dynamic changes of the planned schedule have to be taken into account. A system that has access to delay information about trains (and uses this information within search queries) can provide valid alternatives in case a connection does not work. Additionally, it can be used to actively guide passengers as these alternatives may be presented before the passenger is already stranded at a station due to an invalid transfer.

In this work, we present an approach which takes a stream of delay information and schedule changes on short notice (partial train cancellations, extra trains) into account. Primary delays of trains may cause a cascade of so-called secondary delays of other trains which have to wait according to certain policies for delays between connecting trains. We introduce the concept of a dependency graph to efficiently calculate and update all primary and secondary delays. This delay information is then incorporated into a time-expanded search graph which has to be updated dynamically. These update operations are quite complex, but turn out to be not time-critical in a fully realistic scenario.

We finally present a case study with data provided by Deutsche Bahn AG, showing that this approach has been successfully integrated into the multi-criteria timetable information system MOTIS and can handle massive delay data streams instantly.

Keywords

timetable information system primary and secondary delays dependency graph dynamic graph update 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Frede, L., Müller-Hannemann, M., Schnee, M.: Efficient on-trip timetable information in the presence of delays. In: Fischetti, M., Widmayer, P. (eds.) Proceedings of ATMOS 2008 - 8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany (2008)Google Scholar
  2. 2.
    Müller-Hannemann, M., Schulz, F., Wagner, D., Zaroliagis, C.: Timetable information: Models and algorithms. In: Geraets, F., Kroon, L.G., Schoebel, A., Wagner, D., Zaroliagis, C.D. (eds.) Railway Optimization 2004. LNCS, vol. 4359, pp. 67–90. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Delling, D., Giannakopoulou, K., Wagner, D., Zaroliagis, C.: Timetable Information Updating in Case of Delays: Modeling Issues. Technical report ARRIVAL-TR-0133, ARRIVAL Project (2008)Google Scholar
  4. 4.
    Müller-Hannemann, M., Schnee, M.: Finding all attractive train connections by multi-criteria Pareto search. In: Geraets, F., Kroon, L.G., Schoebel, A., Wagner, D., Zaroliagis, C.D. (eds.) Railway Optimization 2004. LNCS, vol. 4359, pp. 246–263. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Gatto, M., Glaus, B., Jacob, R., Peeters, L., Widmayer, P.: Railway delay management: Exploring its algorithmic complexity. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 199–211. Springer, Heidelberg (2004)Google Scholar
  6. 6.
    Gatto, M., Jacob, R., Peeters, L., Schöbel, A.: The computational complexity of delay management. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 227–238. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Ginkel, A., Schöbel, A.: The bicriteria delay management problem. Transportation Science 41, 527–538 (2007)CrossRefGoogle Scholar
  8. 8.
    Schöbel, A.: Integer programming approaches for solving the delay management problem. In: Geraets, F., Kroon, L.G., Schoebel, A., Wagner, D., Zaroliagis, C.D. (eds.) Railway Optimization 2004. LNCS, vol. 4359, pp. 145–170. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Meester, L.E., Muns, S.: Stochastic delay propagation in railway networks and phase-type distributions. Transportation Research Part B 41, 218–230 (2007)CrossRefGoogle Scholar
  10. 10.
    Anderegg, L., Penna, P., Widmayer, P.: Online train disposition: to wait or not to wait? ATMOS 2002. In: ICALP 2002 Satellite Workshop on Algorithmic Methods and Models for Optimization of Railways, Electronic Notes in Theoretical Computer Science, vol. 66 (2002)Google Scholar
  11. 11.
    Müller-Hannemann, M., Schnee, M.: Paying less for train connections with MOTIS. In: Kroon, L.G., Möhring, R.H. (eds.) 5th Workshop on Algorithmic Methods and Models for Optimization of Railways, Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany (2006)Google Scholar
  12. 12.
    Gunkel, T., Müller-Hannemann, M., Schnee, M.: Improved search for night train connections. In: Liebchen, C., Ahuja, R.K., Mesa, J.A. (eds.) Proceedings of ATMOS 2007 - 7th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems, Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany (2007); Extended journal version appears in NetworksGoogle Scholar
  13. 13.
    Disser, Y., Müller-Hannemann, M., Schnee, M.: Multi-criteria shortest paths in time-dependent train networks. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 347–361. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Matthias Müller-Hannemann
    • 1
  • Mathias Schnee
    • 2
  1. 1.Computer ScienceMartin-Luther-University HalleHalleGermany
  2. 2.Computer ScienceDarmstadt University of TechnologyDarmstadtGermany

Personalised recommendations