Sensor Field: A Computational Model

  • Carme Àlvarez
  • Amalia Duch
  • Joaquim Gabarro
  • Maria Serna
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5804)


We introduce a formal model of computation for networks of tiny artifacts, the static synchronous sensor field model (SSSF) which considers that the devices communicate through a fixed communication graph and interact with the environment through input/output data streams. We analyze the performance of SSSFs solving two sensing problems the Average Monitoring and the Alerting problems. For constant memory SSSFs we show that the set of recognized languages is contained in DSPACE(n + m) where n is the number of nodes of the communication graph and m its number of edges. Finally we explore the capabilities of SSSFs having sensing and additional non-sensing constant memory devices.


Sensor Network Data Stream Data Item Communication Graph Message Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A Survey on Sensor Networks. IEEE Communications Magazine 40(8), 102–114 (2002)CrossRefGoogle Scholar
  2. 2.
    Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distributed computing 18(4), 235–253 (2006)CrossRefGoogle Scholar
  3. 3.
    Berstel, J.: Quelques applications des reseaux d’automates. Thèse de 3ème Cycle (1967)Google Scholar
  4. 4.
    Chatzigiannakis, I., Michail, O., Spirakis, P.G.: Mediated Population Protocols. In: Albers, et al. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 363–374. Springer, Heidelberg (2009)Google Scholar
  5. 5.
    Estrin, D., Culler, D., Pister, K., Sukatme, G.: Connecting the Physical World with Pervasive Networks. Pervasive Computing 6(2), 59–69 (2002)CrossRefGoogle Scholar
  6. 6.
    Gibbons, P.B., Tirthapura, S.: Estimating simple functions on the union of data streams. In: SPAA 2001, pp. 281–291 (2001)Google Scholar
  7. 7.
    Henzinger, T.A.: The Theory of Hybrid Automata. In: LICS 1996, pp. 278–292 (1996)Google Scholar
  8. 8.
    Hoare, C.A.R.: A calculus of total correctness for communicating processes. Sci. Comput. Program. 1(1-2), 49–72 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Karl, H., Willig, A.: Protocols and Architectures for Wireless Sensor Networks. John Wiley & Sons Ltd., Chichester (2005)CrossRefGoogle Scholar
  10. 10.
    Lynch, N., Segala, R., Vaandrager, F.: Hybrid I/O Automata Revisited. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 403–417. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Peleg, D.: Distributed Computing. A Locality-Sensitive Approach, ch. 2. SIAM Monographs on Discrete Mathematics and Applications (2003)Google Scholar
  12. 12.
    Tilak, S., Abu-Ghazaleh, N.B., Heinzelman, W.: A Taxonomy of Wireless Micro-Sensor Network Models. Mobile Computing and Communications Review 6(2), 28–36 (2003)CrossRefGoogle Scholar
  13. 13.
    Valiant, L.G.: A bridging model for parallel computation. Communications of the ACM 33(8), 103–111 (1990)CrossRefGoogle Scholar
  14. 14.
    Vinyals, M., Rodriguez-Aguilar, J.A., Cerquides, J.: A Survey on Sensor Networks from a Multi-Agent Perspective. In: AAMAS 2008, pp. 1071–1078 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Carme Àlvarez
    • 1
  • Amalia Duch
    • 1
  • Joaquim Gabarro
    • 1
  • Maria Serna
    • 1
  1. 1.ALBCOM Research GroupUniversitat Politècnica de Catalunya 

Personalised recommendations