Compressing Kinetic Data from Sensor Networks

  • Sorelle A. Friedler
  • David M. Mount
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5804)


We introduce a framework for storing and processing kinetic data observed by sensor networks. These sensor networks generate vast quantities of data, which motivates a significant need for data compression. We are given a set of sensors, each of which continuously monitors some region of space. We are interested in the kinetic data generated by a finite set of objects moving through space, as observed by these sensors. Our model relies purely on sensor observations; it allows points to move freely and requires no advance notification of motion plans. Sensor outputs are represented as random processes, where nearby sensors may be statistically dependent. We model the local nature of sensor networks by assuming that two sensor outputs are statistically dependent only if the two sensors are among the k nearest neighbors of each other. We present an algorithm for the lossless compression of the data produced by the network. We show that, under the statistical dependence and locality assumptions of our framework, asymptotically this compression algorithm encodes the data to within a constant factor of the information-theoretic lower bound optimum dictated by the joint entropy of the system.


Sensor Network Wireless Sensor Network Compression Algorithm Sensor Output Lossless Compression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Saunier, N., Sayed, T.: Automated analysis of road safety with video data. In: Transportation Research Record, pp. 57–64 (2007)Google Scholar
  2. 2.
    Mainwaring, A., Culler, D., Polastre, J., Szewczyk, R., Anderson, J.: Wireless sensor networks for habitat monitoring. In: ACM international workshop on wireless sensor networks and applications, pp. 88–97 (2002)Google Scholar
  3. 3.
    MIT Media Lab: The owl project,
  4. 4.
    Stutchbury, B.J.M., Tarof, S.A., Done, T., Gow, E., Kramer, P.M., Tautin, J., Fox, J.W., Afanasyev, V.: Tracking long-distance songbird migration by using geolocators. Science, 896 (February 2009)Google Scholar
  5. 5.
    Huffman, D.A.: A method for the construction of minimum-redundancy codes. In: Proc. of the IRE, vol. 40 (September 1952)Google Scholar
  6. 6.
    Rissanen, J.: Generalized Kraft inequality and arithmetic coding. IBM Jour. of Research and Dev. 20 (1976)Google Scholar
  7. 7.
    Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Transactions on Information Theory IT-23(3) (May 1977)Google Scholar
  8. 8.
    Deligiannakis, A., Kotidis, Y., Roussopoulos, N.: Processing approximate aggregate queries in wireless sensor networks. Inf. Syst. 31(8), 770–792 (2006)CrossRefGoogle Scholar
  9. 9.
    Gandhi, S., Nath, S., Suri, S., Liu, J.: Gamps: Compressing multi sensor data by grouping and amplitude scaling. In: ACM SIGMOD (2009)Google Scholar
  10. 10.
    Cormode, G., Muthukrishnan, S., Zhuang, W.: Conquering the divide: Continuous clustering of distributed data streams. In: IEEE 23rd International Conference on Data Engineering, pp. 1036–1045 (2007)Google Scholar
  11. 11.
    Cormode, G., Muthukrishnan, S., Yi, K.: Algorithms for distributed functional monitoring. In: SODA, pp. 1076–1085 (2008)Google Scholar
  12. 12.
    Soroush, E., Wu, K., Pei, J.: Fast and quality-guaranteed data streaming in resource-constrained sensor networks. In: ACM Symp. on Mobile ad hoc networking and computing, pp. 391–400 (2008)Google Scholar
  13. 13.
    Johnen, C., Nguyen, L.H.: Self-stabilizing weight-based clustering algorithm for ad hoc sensor networks. In: Workshop on Algorithmic Aspects of Wireless Sensor Networks (AlgoSensors), pp. 83–94 (2006)Google Scholar
  14. 14.
    Nikoletseas, S., Spirakis, P.G.: Efficient sensor network design for continuous monitoring of moving objects. Theoretical Computer Science 402(1), 56–66 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Deligiannakis, A., Kotidis, Y., Roussopoulos, N.: Dissemination of compressed historical information in sensor networks. VLDB Journal 16(4), 439–461 (2007)CrossRefGoogle Scholar
  16. 16.
    Sadler, C.M., Martonosi, M.: Data compression algorithms for energy-constrained devices in delay tolerant networks. In: SENSYS (November 2006)Google Scholar
  17. 17.
    Guibas, L.J.: Sensing, tracking and reasoning with relations. IEEE Signal Processing Mag. 19(2) (March 2002)Google Scholar
  18. 18.
    Guitton, A., Trigoni, N., Helmer, S.: Fault-tolerant compression algorithms for sensor networks with unreliable links. Technical Report BBKCS-08-01, Birkbeck, University of London (2008)Google Scholar
  19. 19.
    Gupta, P., Janardan, R., Smid, M.: Fast algorithms for collision and proximity problems involving moving geometric objects. Comput. Geom. Theory Appl. 6, 371–391 (1996)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Atallah, M.J.: Some dynamic computational geometry poblems. Comput. Math. Appl. 11(12), 1171–1181 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Schomer, E., Theil, C.: Efficient collision detection for moving polyhedra. In: Proc. 11th Annu. ACM Sympos. Comput. Geom., pp. 51–60 (1995)Google Scholar
  22. 22.
    Schomer, E., Theil, C.: Subquadratic algorithms for the general collision detection problem. In: European Workshop Comput. Geom., pp. 95–101 (1996)Google Scholar
  23. 23.
    Basch, J., Guibas, L.J., Hershberger, J.: Data structures for mobile data. In: SODA (1997)Google Scholar
  24. 24.
    Kahan, S.: A model for data in motion. In: STOC 1991: Proc. of the 23rd ACM Symp. on Theory of Computing, pp. 265–277 (1991)Google Scholar
  25. 25.
    Agarwal, P.K., Guibas, L.J., Edelsbrunner, H., Erickson, J., Isard, M., Har-Peled, S., Hershberger, J., Jensen, C., Kavraki, L., Koehl, P., Lin, M., Manocha, D., Metaxas, D., Mirtich, B., Mount, D.M., Muthukrishnan, S., Pai, D., Sacks, E., Snoeyink, J., Suri, S., Wolefson, O.: Algorithmic issues in modeling motion. ACM Computing Surveys 34, 550–572 (2002)CrossRefGoogle Scholar
  26. 26.
    Guibas, L.: Kinetic data structures. In: Mehta, D., Sahni, S. (eds.) Handbook of Data Structures and App., pp. 23–1–23–18. Chapman and Hall/CRC (2004)Google Scholar
  27. 27.
    Babcock, B., Olston, C.: Distributed top-k monitoring. In: SIGMOD, pp. 28–39 (2003)Google Scholar
  28. 28.
    Yi, K., Zhang, Q.: Multi-dimensional online tracking. In: SODA (2009)Google Scholar
  29. 29.
    Mount, D.M., Netanyahu, N.S., Piatko, C., Silverman, R., Wu, A.Y.: A computational framework for incremental motion. In: Proc. 20th Annu. ACM Sympos. Comput. Geom., pp. 200–209 (2004)Google Scholar
  30. 30.
    Gandhi, S., Kumar, R., Suri, S.: Target counting under minimal sensing: Complexity and approximations. In: Workshop on Algorithmic Aspects of Wireless Sensor Networks (AlgoSensors), pp. 30–42 (2008)Google Scholar
  31. 31.
    Shannon, C.E.: A mathematical theory of communication. The Bell System Technical Journal 27, 379–423, 623–656 (1948)zbMATHMathSciNetGoogle Scholar
  32. 32.
    Krauthgamer, R., Lee, J.R.: Navigating nets: Simple algorithms for proximity search. In: SODA (2004)Google Scholar
  33. 33.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley-IEEE (2006)Google Scholar
  34. 34.
    Friedler, S.A., Mount, D.M.: Compressing kinetic data from sensor networks. Technical Report CS-TR-4941, UMIACS-TR-2009-10, University of Maryland, College Park (2009)Google Scholar
  35. 35.
    Wyner, A.D., Ziv, J.: The sliding-window lempel-ziv algorithm is asymptotically optimal. In: Proceedings of the IEEE, June 1994, pp. 872–877 (1994)Google Scholar
  36. 36.
    Wren, C.R., Ivanov, Y.A., Leigh, D., Westbues, J.: The MERL motion detector dataset: 2007 workshop on massive datasets. Technical Report TR2007-069, Mitsubishi Electric Research Laboratories, Cambridge, MA, USA (August 2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Sorelle A. Friedler
    • 1
  • David M. Mount
    • 1
  1. 1.Dept. of Computer ScienceUniversity of MarylandUSA

Personalised recommendations