Irreversible Electroporation Systems for Clinical Use

  • Claudio Bertacchini
  • Pier Mauro Margotti
  • Enrico Bergamini
  • Mattia Ronchetti
  • Ruggero Cadossi
Part of the Series in Biomedical Engineering book series (BIOMENG)


Electroporation is a technique that uses micro to milliseconds electric pulses to create pores in the cell membrane, thus allowing molecules that, due to their physical and/or chemical properties, would normally not be able to cross the cell membrane, to enter the cell (1-5). Electroporation finds applications in many fields in particular for gene insertion in cells (electrogenetherapy) (6,7) and for the treatment of cancer (electrochemotherapy). In electrochemotherapy, the combination of chemotherapy and electroporation of tumour cells, the effects of drugs that usually show little cytotoxicity are greatly increased (8). The opening of pores in the cell membrane allows the chemotherapeutic agent to enter the cell at greater, more effective concentration and exert its cytotoxic action by killing the target cell (9-11).


Graphical User Interface Power Unit Irreversible Electroporation Pulse Transformer High Voltage Generator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Neumann, E., Rosenheck, K.: Permeability Changes Induced by Electric Impulses in vescicular membrane. J. Membrane Biol. 10, 279–290 (1972)CrossRefGoogle Scholar
  2. 2.
    Crowley, J.M.: Electrical Breakdown of Biomolecular Lipid Membranes as an Electromechanical Instability. Biophysical Journal 13, 711–724 (1973)CrossRefGoogle Scholar
  3. 3.
    Zimmermann, U., Vienken, J., Pilwat, G.: Dielectric Breakdown of Cell Membranes. Biophysical Journal 14, 881–899 (1974)CrossRefGoogle Scholar
  4. 4.
    Weaver, J.C.: Electroporation of Cells and Tissues. IEEE Transactions on Plasma Science 28, 24–33 (2000)CrossRefGoogle Scholar
  5. 5.
    Puc, M., Corovic, S., Flisar, K., Petkovsek, M., Nastran, J., Miklavcic, D.: Techniques of Signal Generation Required for Electropermeabilization. Survey of Electropermeabilization Devices. Bioelectrochemistry 64, 113–124 (2004)CrossRefGoogle Scholar
  6. 6.
    Neumann, E., Schaefer-Ridder, M., Wang, Y., Hofschneider, P.H., et al.: Gene Transfer into Mouse Lyoma Cells by Electroporation in High Electric Fields. J. EMBO 1, 841–845 (1982)Google Scholar
  7. 7.
    Gehl, J.: Electroporation: Theory and Methods, Perspectives for Drug Delivery, Gene Therapy and Research. Acta Physiol. Scand. 177, 437–447 (2003)CrossRefGoogle Scholar
  8. 8.
    Mir, L.M., Belehradek, M., Domenge, C., Luboniski, B., Orlowski, S., Belehradek, J., Schwaab, B., Luboniski, B., Paoletti, C.: Electrohemotherapy, A Novel Antitumor Treatment: First Clinical Trial. C. R. Acad. Sci. Ser. III 313, 613–618 (1991)Google Scholar
  9. 9.
    Mir, L.M.: Therapeutic perspective of in vivo cell electropermeabilization. Bioelectrochemistry 53, 1–10 (2000)CrossRefGoogle Scholar
  10. 10.
    Marty, M., Sersa, G., Garbay, J.R., Gehl, J., Collins, C.G., Snoj, M., Billard, V., Geertsen, P.F., Larkin, J.O., Miklavcic, D., et al.: Electrochemotherapy – An Easy Highly effective and Safe Treatment of Cutaneous and Subcutaneous Metastases: Results of ESOPE ( European Standard Operating Procedures of Electrochemotherapy) Study. Eur. J. Cancer Supp. 4, 3–13 (2006)CrossRefGoogle Scholar
  11. 11.
    Mir, L.M., Gehl, J., Sersa, G., Collins, G.C., Garbay, J.R., Billard, V., Geersten, P.F., Rudolf, Z., O’Sullivan, G.C., Marty, M.: Standard Operating Procedures of the Electrochemotherapy: Instructions for the Use of Bleomycin or Cisplatin Administered either Sistemically or Locally and Electric Pulses Delivered by the CliniporatorTM by Means of Invasive or Non-invasive electrodes. Eur. J. Cancer Supp. 4, 14–25 (2006)CrossRefGoogle Scholar
  12. 12.
    Rubinsky, B., Onik, G., Mikus, P.: Irreversible Electroporation: A New Ablation Modality – Clinical Implications. Technology in Cancer Research and Treatment 6, 37–48 (2007)Google Scholar
  13. 13.
    Davalos, R.V., Mir, L.M., Rubinsky, B.: Tissue Ablation with Irreversible Electroporation. Annals of Biomedical Engineering 33, 223–231 (2005)CrossRefGoogle Scholar
  14. 14.
    European Standard EN60601-1 Medical electrical equipment - Part 1: General Requirements for safety, 2nd edn. (1998)Google Scholar
  15. 15.
    European Collateral Standard EN60601-1-2; 2. Collateral Standard: Electromagnetic Compatibility Requirements and testsGoogle Scholar
  16. 16.
    UL Standard for Safety for Medical Electrical Equipment, Part 1: General Requirements for Safety, UL; 60601-1, 1st edn. (2003)Google Scholar
  17. 17.
    General Principles of Software Validation, Final Guidance for Industry and FDA Staff, CDRH (2002)Google Scholar
  18. 18.
    Patrick, R.J.: Applied Bioelectricity: from electrical stimulation to electropathology. Springer, Heidelberg (1998)Google Scholar
  19. 19.
    IEC 601-2-4:1983-01; Medical electrical equipment - Particular Requirements for the safety of cardiac defibrillators and cardiac defibrillator-monitorsGoogle Scholar
  20. 20.
    IEC 601-2-2:1998-09; Medical electrical equipment - Part 2: Particular Requirements for the safety of high frequency surgical equipmentGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Claudio Bertacchini
    • 1
  • Pier Mauro Margotti
    • 1
  • Enrico Bergamini
    • 1
  • Mattia Ronchetti
    • 1
  • Ruggero Cadossi
    • 1
  1. 1.IGEA S.p.A.CarpiItaly

Personalised recommendations