Kognitive Grundlagen

Chapter
Part of the eXamen.press book series (EXAMEN)

Zusammenfassung

Der Mensch nimmt die Ausgaben des Computers über verschiedene Kanäle wahr, verarbeitet und speichert sie. Von der Art der Präsentation, von der Zeit und den umgebenden Einflüssen hängt es ab, wie aufmerksam Informationen wahrgenommen, verarbeitet und eventuell auch längere Zeit behalten werden. Benutzer müssen wissen, wie Kommandos heißen oder zumindest wie sie diese aktivieren können und sie müssen entscheiden, auf welche Weise sie ihre Ziele erreichen wollen. Um die ablaufenden Prozesse zu verstehen, ist eine Beschäftigung mit den Grundlagen der kognitiven Psychologie nötig.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. Barnard, P. (1985). Progress in the Psychology of Language, chapter Interacting Cognitive Subsystems: A psycholinguistic approach to short term memory. Lawrence Erlbaum, London.Google Scholar
  2. Broadbent, D. E. (1958). Perception and communication. London Pergamon Press.CrossRefGoogle Scholar
  3. Bartram, L. (1997). Perceptual and interpretative properties of motion for information visualization. In Workshop on New Paradigms in Information Visualization and Manipulation, S. 3–7.Google Scholar
  4. Dahm, M. (2005). Grundlagen der Mensch-Computer-Interaktion. Pearson Studium.Google Scholar
  5. Thimbleby, H. (1990). User Interface Design. ACM Press Frontier Series.Google Scholar
  6. Reason, J. T. (1979). Aspects of consciousness, chapter Actions not as planned, S. 67–89. Academic Press London.Google Scholar
  7. Bowman, D. A., Kruijff, E., LaViola, J. J., Poupyrev, I. (2004). 3D User Interfaces: Theory and Practice. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA.Google Scholar
  8. Anderson, J. R. (2004). Cognitive Psychology and its Implications. Worth Publishers, 6 edition.Google Scholar
  9. Solso, R. L. (1995). Cognitive Psychology. Allyn & Bacon, 4th edition.Google Scholar
  10. Pylyshyn, Z., Burkell, J., Fisher, B., Sears, C., Schmidt, W., Trick, L. (1993). Multiple parallel access in visual attention. Canadian Journal of Experimental Psychology, 48 (2): 260–283.CrossRefGoogle Scholar
  11. Gelfand, S. A. (2004). Hearing: An Introduction to Psychological and Physiological Acoustics. Marcel Dekker, New York, 3. edition.CrossRefGoogle Scholar
  12. Wanger, L., Ferwerda, J., Greenbeerg, D. (1992). Perceiving spatial relationships in computer-generated images. IEEE Computer Graphics and Applications, 12 (3): 44–58.CrossRefGoogle Scholar
  13. Pollmann, S. (2008). Allgmeine Psychologie. UTB, Stuttgart.Google Scholar
  14. Zimolong, B. (1990). Ingenieurpsychologie. Enzyklopädie der Psychologie, chapter Fehler und Zuverlässigkeit, S. 313–345. Hogrefe Göttingen.Google Scholar
  15. Chua, R., Weeks, D. J., Goodman, D. (2003). The human-computer interaction handbook: fundamentals, evolving technologies and emerging applications, chapter Perceptual-Motor Interaction: Some Implications for Human Computer Interaction, S. 23–34. Lawrence Erlbaum Associates, Inc., Mahwah, NJ, USA.Google Scholar
  16. Rasmussen, J. (1982). Human Errors: A Taxonomy for Describing Human Malfunction in Industrial Installations. Journal of Oppupational Accidents, 4: 331–333.Google Scholar
  17. Wandmacher, J. (1993). Software-Ergonomie. Walter Gruyter Berlin.Google Scholar
  18. Festinger, L. (1957). A Theory of Cognitive Dissonance. Stanford University Press, Stanford, California.Google Scholar
  19. Wolfe, J. M., Butcher, S. J., Lee, C., Hyle, M. (2003). Changing your mind: On the contributions of top-down and bottom-up guidance in visual search for feature singletons. Journal of Experimental Psychology: Human Perception and Performance, 29: 483–502.Google Scholar
  20. Wessels, M. G. (1990). Kognitive Psychologie, Übersetzung aus dem Amerikanischen: Jochen Gerstenmaier, volume 2. unveränderte Auflage (1. Auflage 1984). Ernst Reinhardt GmbH & Co Verlag, München.Google Scholar
  21. Laird, J. E., Rosenbloom, P., Newell, A. (1986). Universal Subgoaling and Chunking. Kluwer Academic.Google Scholar
  22. Landauer, T. K. (1987). Interacting Thought: Cognitive Aspects of Human-Computer Interaction, chapter Relations between Cognitive Psychology and Comptuer Systems Design, S. 1–25. MIT Press, Cambridge, Massachusetts.Google Scholar
  23. Cheery, E. C. (1953). some experiments on the recognition of speed with one or two ears. Journal of the Acoustical Society, 25 (5):975–979.CrossRefGoogle Scholar
  24. Baddeley, A. D. (2002). Is working memory still working? European Psychologist, 7:85–97.CrossRefGoogle Scholar
  25. Goldstein, E. B. (2002). Sensation and Perception. Wadsworth Publishing, Belmont, California, 6. edition.Google Scholar
  26. Cowan, N. (1991). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24:87–114.CrossRefGoogle Scholar
  27. Strube, G., Becker, B., Freska, C., Hahn, U., Opwis, K., Palm, G. (1996). Wörterbuch der Kognitionswissenschaft. Klett-Cotta Verlag, Stuttgart.Google Scholar
  28. Interrante, V., Fuchs, H., Pizer, S. M. (1997). Conveying the 3d shape of smoothly curving transparent surfaces via texture. IEEE Trans. on Visualization and Computer Graphics, 3(2):98–117.CrossRefGoogle Scholar
  29. Baddeley, A. D. (2000). The episodic buffer. a new component of working memory? Trends in Cognitive Sciences, 4(11):418–423.CrossRefGoogle Scholar
  30. Card, S. K., Newell, A., Moran, T. P. (1983). The psychology of human computer interaction. Lawrence, Erlbaum Associates.Google Scholar
  31. Raskin, J. (2000). The Intelligent User Interface. Addison-Wesley.Google Scholar
  32. Ware, C., Neufeld, E., Bartram, L. (1999). Visualizing causal relations. In Proc. of IEEE Information Visualization: Late Breaking Hot Topics, S. 39–42.Google Scholar
  33. Potter, M.C. (1976). Short-term conceptual memory for pictures. Journal of Experimental Psychology: Human Learning and Memory, 2: 509–522.Google Scholar
  34. Ware, C. (2004). Information Visualization - Perception for Design. 2. Auflage. Morgan Kaufmann.CrossRefGoogle Scholar
  35. Wertheimer, M. (1925). Drei Abhandlungen zur Gestalttheorie. Verlag der Philosophischen Akademie Erlangen.Google Scholar
  36. Wolfe, J. M. (1994). Guided search 2.0: A revised model of visual search. Psychonomic Bulletin and Review, 1:202–238.CrossRefGoogle Scholar
  37. Miller, G. (1956). The magic number seven, plus or minus two: Some limits on our capability for processing information. Psychological Science, 63:81–97.Google Scholar
  38. Wolfe, J. M., Cave, K., Franzel, S. (1989). Guided search: An alternative to the feature integration model for visual search. Journal of Experimental Psychology in Human Perception an Performance, 15: 419–433.CrossRefGoogle Scholar
  39. Anderson, J. R. (1983). The architecture of cognition. Harvard University Press, Cambridge, MA.Google Scholar
  40. Benyon, D., Turner, P., Turner, S. (2005). Designing Interactive Systems. Maidenhead: Pearson Education.Google Scholar
  41. Bartram, L. (2001). Perceptual and interpretative properties of motion for information visualization. PhD Thesis, Simon Fraser University, School of Computing Science.Google Scholar
  42. Card, S. K., English, W., Burr, B. (1978). Evaluation of mouse, rate-controlled isometric joystick, step keys and text keys for text selection of a crt. Ergonomics, 21(8):601–613.CrossRefGoogle Scholar
  43. Baecker, R., Small, I., Mander, R. (1991). Bringing icons to life. In Proc. of the ACM SIGCHI conference on Human factors in computing systems, S. 1–6.Google Scholar
  44. Varakin, D. A., Levin, D. T., Fidler, R. (2004). Unseen and unaware: Implications of recent research on failures of visual awareness for human-computer interface design. Human-Computer Interaction, 19 (4): 389–422.CrossRefGoogle Scholar
  45. Heinecke, A. (2004). Mensch-Computer-Interaktion. Hanser Fachbuchverlag.Google Scholar
  46. Anderson, J. R. (1976). Language, Memory and Thought. Lawrence Erlbaum, Hillsdale, New Jersey.Google Scholar
  47. Treisman, A. (1986). Features and objects in visual processing. Scientific American, 255: 106–115.CrossRefGoogle Scholar
  48. Aaltonen, A., Hyrskykari, A., Raiha, K. J. (1998). 101 spots, op how do users read menus. In Proc. of the ACM SIGCHI conference on Human Factors in Computing Systems, S. 132–139.Google Scholar
  49. Burgert, O., Örn, V., Joos, M., Strauß, G., Tietjen, C., Preim, B., Hertel, I. (2007). Evaluation of Perception Performance in Neck Dissection Planning using Eye-Tracking. In SPIE Conference on Medical Image Computing.Google Scholar
  50. Strittmatter, P. (1979). Bund-Länder-Kommission für Bildungsplanung und Forschungsförderung, chapter Modellversuche zum Schulfernsehen. Bericht über eine Auswertung.Google Scholar
  51. Jacob, R. (1991). The use of eye movements in human-computer interaction techniques: what you look at is what you get. ACM Trans. Inf. Syst., 9(2):152–169.MathSciNetCrossRefGoogle Scholar
  52. Hyman, R. (1953). Stimulus information as a determinant of reaction time. Journal of Experimental Psychology, 45:188–196.CrossRefGoogle Scholar
  53. Tai, G., Kern, D., Schmidt, A. (2009). Bridging the communication gap: A driver-passenger video link. In Proc. of Mensch & Computer, S. 73–82. Oldenbourg-Verlag.Google Scholar
  54. Hick, W. E. (1952). On the rate of gain of information. The Quarterly Journal of Experimental Psychology, 4:11–26.CrossRefGoogle Scholar
  55. Braun, G. (1993). Grundlagen der visuellen Kommunikation. München, 2. edition.Google Scholar
  56. Mayo, E. (1933). The Human Problem of an Industrial Civilisation. Macmillan.Google Scholar
  57. Metelli, F. (1974). The perception of transparency. Scientific American, 230(4):90–98.CrossRefGoogle Scholar
  58. Lehmann, T., Oberschelp, W., Pelikan, E., Repges, R. (1997). Bildverarbeitung für die Medizin. Springer.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Fakultät InformatikUniversität MagdeburgMagdeburgDeutschland

Personalised recommendations