Biogeochemical cycling in tropical forests

  • M. E. McGroddy
  • W. L. Silver
Part of the Springer Praxis Books book series (PRAXIS)


Increased inputs of greenhouse gases have altered the composition of the atmosphere over the past 150 years (IPCC, 2001, 2007), resulting in shifts in temperature and precipitation around the globe. The scientific community has put an enormous effort into understanding the causes of these changes, and predicting future climate and the interactions between climate and the biosphere that may moderate or accelerate current trends. Most of the research on climate change has focused on boreal and north temperate ecosystems where temperature shifts are predicted to be the largest (IPCC, 2001, 2007). These ecosystems are often characterized by deep organic soils that present the potential for a strong positive feedback to climate change (Oechel et al., 1998; Vourlitis and Oechel, 1997; Hobbie et al., 2002).


Microbial Biomass Soil Respiration Tropical Forest Biogeochemical Cycling Global Change Biology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aerts, R. (1997) Climate, leaf litter chemistry, and leaf litter decomposition in terrestrial ecosystems: A triangular relationship. Oikos, 79, 439–449.Google Scholar
  2. Andreae, M. O., Talbot, R. W., Beresheim, H., and Beecher, K. M. (1990) Precipitation chemistry in central Amazonia. J. Geophys. Res., 95, 16987–16999.Google Scholar
  3. Arnone III, J. A. and Korner, C. (1995) Soil and biomass carbon pools in model communities of tropical plants under elevated CO2. Oecologia, 104, 61–71.Google Scholar
  4. Arnone, J. A., Zaller, J. G., and Spehn, E. M. (2000) Dynamics of root systems in native grasslands: Effects of elevated atmospheric CO2. New Phytologist, 147, 73–86.Google Scholar
  5. Asner, G. P., Townsend, A. R., Riley, W. J., Matson, P. A., Neff, J. C., and Cleveland, C. C. (2001) Physical and biogeochemical controls over terrestrial ecosystem responses to nitrogen deposition. Biogeochemistry, 54, 1–39.Google Scholar
  6. Bai, E. and Houlton, B. Z. (2009) Coupled isotopic and process-based modeling of gaseous nitrogen losses from tropical rain forests. Global Biogeochem. Cycles, 23, GB2011, doi: 10.1029/2008GB003361.Google Scholar
  7. Baillie, I. C., Ashton, P. S., Chen, S. P., Davies, S. J., Palmiotto, P. A., Russo, S. E., and Tan, S. (2006) Spatial associations of humus, nutrients and soils in mixed dipterocarp forest at Lambir, Sarawak Malaysian Borneo. J. Tropical Ecology, 22, 543–553.Google Scholar
  8. Baker, T. R., Phillips, O. L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Higuchi, N., Killeen, T. J., Laurance, S. G. et al. (2004) Increasing biomass in Amazonian forest plots. Philosophical Trans. Royal Society London B: Biological Sciences, 359, 353–365.Google Scholar
  9. Balser, T. C. and Wixon, D.L. (2009) Investigating biological control over soil carbon temperature sensitivity. Global Change Biology, 15, 2935–2949.Google Scholar
  10. Barron, A. R., Wurzburger, N., Bellenger, J. P., Wright, S. J., and Hedin, L. O. (2009) Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils. Nature Geosciences, 2, 42–45.Google Scholar
  11. Bassirirad, H. (2000) Kinetics of nutrient uptake by roots: Responses to global change. New Phytologist, 147, 155–169.Google Scholar
  12. Bazzaz, F. A. (1998) Tropical forests in a future climate: Changes in biological diversity and impact on the global carbon cycle. Climatic Change, 39, 317–336.Google Scholar
  13. Berntson, G. and Bazzaz, B. (1997) Nitrogen cycling in microcosms of yellow birch exposed to elevated CO2: Simultaneous positive and negative below-ground feedbacks. Global Change Biology, 3, 247–258.Google Scholar
  14. Berntson, G. and Bazzaz, F. (1998) Regenerating temperate forest mesocosms in elevated CO2: Belowground growth and nitrogen cycling. Oecologia, 113, 115–125.Google Scholar
  15. Bolan, N. S. (1991) A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant and Soil, 134, 189–207.Google Scholar
  16. Brando, P. M., Nepstad, D. C., Davidson, E. A., Trumbore, S. E., Ray, D., and Camargo, P. (2008) Drought effects on litterfall, wood production and belowground carbon cycling in an Amazon forest: Results from a throughfall reduction experiment. Philosophical Trans. Royal Society London B, 363, 1839–1848.Google Scholar
  17. Braunberger, P. G., Abbott, L.K., and Robson, A. D. (1997) The effect of rain in the dry-season on the formation of vesicular-arbuscular mycorrhizas in the growing season of annual clover-based pastures. New Phytologist, 127, 107–114.Google Scholar
  18. Brown, S. and Lugo, A. E. (1982) The storage and production of organic matter in tropical forests and their role in the global carbon cycle. Biotropica, 14, 161–187.Google Scholar
  19. Brown, S., Hall, C. A. S., Knabe, W., Raich, J., Trexler, M. C., and Woomer, P. (1993) Tropical forests: Their past, present and potential future in the terrestrial carbon budget. Water Air and Soil Pollution, 70, 71–94.Google Scholar
  20. Burghouts, T. B. A., van Straalen, N. M., and Bruijnzeel, L. A. (1998) Spatial heterogeneity of element and litter turnover on a Bornean rain forest. J. Tropical Ecology, 14, 477–506.Google Scholar
  21. Cattanio, J. H., Davidson, E. A., Nepstad, D. C., Verchot, L. V., and Ackerman, I. L. (2002) Unexpected results of a pilot throughfall exclusion experiment on soil emissions of CO2, CH4, N2O, and NO in eastern Amazonia. Biology and Fertility of Soils, 36, 102–108.Google Scholar
  22. Cavelier, J., Tanner, E., and Santamaria, J. (2000) Effect of water, temperature and fertilizers on soil nitrogen net transformations and tree growth in an elfin cloud forest of Columbia. J. Tropical Ecology, 16, 83–99.Google Scholar
  23. Chacon, N., Silver, W. L., Dubinsky, E. A., and Cusack, D. F. (2006) Iron reduction and soil phosphorus solubilization in humid tropical forest soils: The roles of labile carbon pools and an electron shuttle compound. Biogeochemistry, 78, 67–84.Google Scholar
  24. Chambers, J. Q. and Silver, W. L. (2004) Some aspects of ecophysiological and biogeochemical responses of tropical forests to atmospheric change. Philosophical Trans. Royal Society London B, 359, 463–476.Google Scholar
  25. Chambers, J. Q., Higuchi, N., Tribuzy, E. S., and Trumbore, S. E. (2001) Carbon sink for a century. Nature, 410, 429–429.Google Scholar
  26. Chambers, J. Q., Tribuzy, E. S., Toledo, L. C., Crispim, B. F., Higuchi, N., dos Santos, J., Araujo, A. C., Kruijt, B., Nobre, A. D., and Trumbore, S. E. (2004) Respiration from a tropical forest ecosystem: Partitioning of sources and low carbon use efficiency. Ecological Applications, 14, S72–S88.Google Scholar
  27. Chapin, F. S. (1974) Phosphate absorption capacity and acclimation potential in plants along a latitudinal gradient. Science, 183, 521–523.Google Scholar
  28. Chave, J., Navarrete, D., Almeida, S., A lvarez, E., Arago, L. E. O. C., Bonal, D., Chatelet, P., Silva-Espejo, J. E., Goret, J.-Y., von Hildebrand, P. et al. (2010) Regional and seasonal patterns of litterfall in tropical South America. Biogeosciences, 7, 43–55.Google Scholar
  29. Clark, D. A. (2004) Tropical forests and global warming: Slowing it down or speeding it up? Frontiers in Ecology and the Environment, 2, 73–80.Google Scholar
  30. Clark, D. A. (2007) Detecting tropical forests’ response to global climatic and atmospheric change: Current challenges and a way forward. Biotropica, 39, 4–19.Google Scholar
  31. Clark, D. B., Clark, D. A., and Oberbauer, S. F. (2010) Annual wood production in a tropical rain forest in NE Costa Rica linked to climatic variation but not to increasing CO2. Global Change Biology, 16, 747–759.Google Scholar
  32. Cleveland, C. C. and Townsend, A. R. (2006) Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere. Proceedings of the National Academy of Sciences U.S.A, 103, 10316–10321.Google Scholar
  33. Cleveland, C. C., Townsend, A. R., and Schmidt, S. K. (2002) Phosphorus limitation of microbial processes in moist tropical forests: Evidence from short-term laboratory incubations and field studies. Ecosystems, 5, 680–691.Google Scholar
  34. Condit, R. (1998) Ecological implications of changes in drought patterns: Shifts in forest composition in Panama. Climatic Change, 39, 413–427.Google Scholar
  35. Condit, R., Hubbell, S. P., and Foster, R. B. (1996) Changes in a tropical forest with a shifting climate, results from a 50 hectare permanent census plot at Barro Colorado Island in Panama. J. Tropical Ecology, 12, 231–256.Google Scholar
  36. Cramer, W., Bondeau, A., Schaphoff, S., Lucht, W., Smith, B., and Stich, S. (2004) Tropical forests and the global carbon cycle: Impacts of atmospheric carbon dioxide, climate change and rate of deforestation. Philosophical Trans. Royal Society London B, 359, 331–343.Google Scholar
  37. Crews, T. E., Kitayama, K., Fownes, J. H., Riley, R. H., Herbert, D. A., Mueller-Dombois, D., and Vitousek, P. M. (1995) Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii. Ecology, 76, 1407–1424.Google Scholar
  38. Crews, T. E., Farrington, H., and Vitousek, P. M. (2000) Changes in asymbiotic, heterotrophic nitrogen fixation on leaf litter of Metrosideros polymorpha with long-term ecosystem development in Hawaii. Ecosystems, 3, 386–395.Google Scholar
  39. Cross, A. F. and Schlesinger, W. H. (1995) A literature review and evaluation of the Hedley fractionation: Applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma, 64, 197–214.Google Scholar
  40. Cusack, D. F., Chou, W. W., Yang, W. H., Harmon, M. E., Silver, W. L., and the LIDET Team. (2009) Controls on long-term root and leaf litter decomposition in Neotropical forests. Global Change Biology, 15, 1339–1355.Google Scholar
  41. Cusack, D. F., Silver, W. L., and McDowell, W. H. (2010a) Effects of chronic nitrogen additions on above- and belowground carbon dynamics in two tropical forests. Biogeochemistry, online only doi: 10.1007/s10533-010-9496-4Google Scholar
  42. Cusack, D. F., Torn, M. S., McDowell, W. H., and Silver, W. L. (2010b) The response of heterotrophic activity and carbon cycling to nitrogen additions and warming in two tropical soils. Global Change Biology, 16, 2555–2572.Google Scholar
  43. Davidson, E. A., Matson, P. A., Vitousek, P. M., Riley, R., Dunkin, K., Garcia-Mendez, G., and Maass, J. M. (1993) Processes regulating soil emissions ofNOandNO2 in a seasonally dry tropical forest. Ecology, 74, 130–139.Google Scholar
  44. Davidson, E. A., Ishida, F. Y., and Nepstad, D. C. (2004) Effects of an experimental drought on soil emissions of carbon dioxide, methane, nitrous oxide, and nitric oxide in a moist tropical forest. Global Change Biology, 10, 718–730.Google Scholar
  45. Davidson, E. A., Nepstad, D. C., Ishida F. Y., and Brando, P.M. (2008) Effects of an experimental drought and recovery on soil emissions of carbon dioxide, methane, nitrous oxide and nitric oxide in a moist tropical forest. Global Change Biology, 14, 2582–2590.Google Scholar
  46. Enquist, C. A. F. (2002) Predicted regional impacts of climate change on the geographical distribution and diversity of tropical forests in Costa Rica. J. Biogeography, 29, 519–534.Google Scholar
  47. Espeleta, J. F. and Clark, D. A. (2007) Multi-scale variation in fine root biomass in a tropical rain forest: A seven-year study. Ecological Monographs, 77, 377–404.Google Scholar
  48. Firestone, M. K., Firestone, R. B., and Tiedje, J. M. (1980) Nitrous-oxide from soil denitrification: Factors controlling its biological production. Science, 208, 749–751.Google Scholar
  49. Fitter, A. H., Graves, J. D., Self, G. K., Brown, T. K., Bogie, D. S., and Taylor, K. (1998) Root production, turnover and respiration under two grassland types along an altitudinal gradient: Influence of temperature and solar radiation. Oecologia, 114, 20–30.Google Scholar
  50. Fitter, A. H., Heinemeyer, A., and Staddon, P. L. (2000) The impact of elevated CO2 and global climate change on arbuscular mycorrhizas: A myocentric approach. New Phytologist, 147, 179–187.Google Scholar
  51. Frankenberg, C., Meirink, J. F., van Weele, M., Platt, U., and Wagner, T. (2005) Assessing methane emissions from global space-borne observations. Science, 308, 1010–1014.Google Scholar
  52. Galloway, J. N., Likens, G. E., Keene, W. C., and Miller, J. M. (1982) The composition of precipitation in remote areas of the world. J. Geophys. Res., 87, 8771–8786.Google Scholar
  53. Galloway, J. N., Schlesinger, W. H., Levy, H., Michaels, A., and Schnoor, J. L. (1995) Nitrogen fixation—anthropogenic enhancement—environmental response. Global Biogeochemical Cycles, 9, 235–252.Google Scholar
  54. Gavito, M. E., Schweiger, P., and Jakobsen, I. (2003) P uptake by arbuscular mycorrhizal hyphae: Effect of soil temperature and atmospheric CO2 enrichment. Global Change Biology, 9, 106–116.Google Scholar
  55. Gill, R. A. and Jackson, R. B. (2000) Global patterns of root turnover for terrestrial ecosystems. New Phytologist, 147, 13–31.Google Scholar
  56. Gloor, M., Phillips, O. L., Lloyd, J. J., Lewis, S. L., Malhi, Y., Baker, T. R., Lopez-Gonzalez, G., Peacock, J., Almeida, S., De Oliveira, A. C. A., Alvarez, E. et al. (2009) Does the disturbance hypothesis explain the biomass increase in basin-wide Amazon forest plot data? Global Change Biology, 15, 2418–2430.Google Scholar
  57. Goldammer, J. G. and Seibert, B. (Eds.) (1990) The impact of droughts and forest fires on tropical lowland rain forest of East Kalimantan. Fire in the Tropical Biota: Ecosystem Processes and Global Challenges (Springer Ecological Studies 84, pp. 11–28). Springer- Verlag, Berlin.Google Scholar
  58. Goulden, M. L., Miller, S. D., da Rocha, H. R., Menton, M. C., de Freitas, H. C., Figueira, A. M. E. S., and de Sousa, C. A. D. (2004) Diel and seasonal patterns of tropical forest CO2 exchange. Ecological Applications, 14, S42–S54.Google Scholar
  59. Gower, S. T. (1987) Relations between mineral nutrient availability and fine root biomass in two Costa Rican wet forests: A hypothesis. Biotropica, 19, 171–175.Google Scholar
  60. Hall, S. J. and Matson. P. A. (1999) Nitrogen oxide emissions after nitrogen additions in tropical forests. Nature, 400, 152–155.Google Scholar
  61. Hedin, L. O., Brookshire, E. N. J., Menge, D. N. L., and Barron, A. R. (2009) The nitrogen paradox in tropical forest ecosystems. Annual Review of Ecology and Systematics, 40, 613–635.Google Scholar
  62. Hilbert, D. W., Ostendorf, B., and Hopkins, M. S. (2001) Sensitivity of tropical forests to climate change in the humid tropics of north Queensland. Austral Ecology, 26, 590–603.Google Scholar
  63. Hobbie, S. E. and Vitousek, P. M. (2000) Nutrient limitation of decomposition in Hawaiian forests. Ecology, 81, 1867–1877.Google Scholar
  64. Hobbie, S. E., Nadelhoffer, K. J., and Hogberg, P. (2002) A synthesis: The role of nutrients as constraints on carbon balances in boreal and arctic regions. Plant and Soil, 242, 163–170.Google Scholar
  65. Holdridge, L. R. (1967) Life Zone Ecology. Tropical Science Center, San Jose, Costa Rica (206 pp.).Google Scholar
  66. Hulme, M., Doherty, R., Ngara, T., New, M., and Lister, D. (2001) African climate change: 1900–2100. Climate Research, 17, 145–168.Google Scholar
  67. IPCC (2001) Climatic Change 2001: The Scientific Basis. Cambridge University Press, Cambridge, U.K.Google Scholar
  68. IPCC (2007) Climate Change 2007: The Physical Science Basis. Cambridge University Press Cambridge, U.K.Google Scholar
  69. Jackson, R. B., Canadell, J., Ehleringer, J. R., Mooney, H. A., Sala, O. E., and Schulze, E. D. (1996) A global analysis of root distributions for terrestrial biomes. Oecologia, 108, 389–411.Google Scholar
  70. Janos, D. P. (1983) Tropical mycorrhizas, nutrient cycles and plant growth. In: S. L. Sutton, T. C. Whitemore, and A. C. Chadwick (Eds.), Tropical Rain Forest: Ecology and Management, pp. 327–345. Blackwell Scientific, Oxford, U.K.Google Scholar
  71. Jaramillo, V. J. and Sanford Jr., R. L. (1995) Nutrient cycling in tropical deciduous forests. In: S. H. Bullock, H. A. Mooney, and E. Medina (Eds.), Seasonally Dry Tropical Forests, pp. 346–361. Cambridge University Press, Cambridge, U.K.Google Scholar
  72. Jensen, M. N. (2004) Climate warming shakes up species. BioScience, 54, 722–729. Johnson, A. H., Frizano, J., and Vann, D. R. (2003) Biogeochemical implications of labile phosphorus in forest soils determined by the Hedley fractionation procedure. Oecologia, 135, 487–499.Google Scholar
  73. Jordan, C. F. (1985) Nutrient Cycling in Tropical Forest Ecosystems: Principles and Their Application in Management and Conservation. John Wiley & Sons, New York.Google Scholar
  74. Kanowski, J. (2001) Effects of elevated CO2 on the foliar chemistry of seedlings of two rainforest trees from north-east Australia: Implications for folivorous marsupials. Austral Ecology, 26, 165–172.Google Scholar
  75. Keller, M. and Reiners, W. A. (1994) Soil atmosphere exchange of nitrous oxide, nitric oxide, and methane under secondary succession of pasture to forest in the Atlantic lowlands of Costa Rica. Global Biogeochemical Cycles, 8, 399–410.Google Scholar
  76. Keller, M., Kaplan, W. A., and Wofsy, S. C. (1986) Emissions of N2O, CH4, and CO2 from tropical forest soils. J. Geophys. Res., 91, 11791–11802.Google Scholar
  77. Keller, M., Varner, R., Dias, J. D., Silva, H., Crill, P., Cosme da Silva Jr., R., and Asner, G. P. (2005) Soil–atmosphere exchange of nitrous oxide, nitric oxide, methane, and carbon dioxide in logged and undisturbed forest in the Tapajos National Forest, Brazil. Earth Interactions, 9, paper 23.Google Scholar
  78. Kitayama, K., Aiba, S. I., Takyu, M., Majalap, N., and Wagai, R. (2004) Soil phosphorus fractionation and phosphorus-use efficiency of a Bornean tropical montane rain forest during soil aging with podozolization. Ecosystems, 7, 259–274.Google Scholar
  79. Koltunova, A., Ustin, S. L., Asner, G. P., and Fung, I. (2009) Selective logging changes forest phenology in the Brazilian Amazon: Evidence from MODIS image time series analysis. Remote Sensing of Environment, 113, 2431–2440.Google Scholar
  80. Ko rner, C. (1998) Tropical forests in a CO2-rich world. Climatic Change, 39, 297–315. Ko rner, C. (2004) Through enhanced tree dynamics carbon dioxide enrichment may cause tropical forests to lose carbon. Philosophical Trans. Royal Society London B, 359, 493–498.Google Scholar
  81. Lal, C. B., Annapurna, C., Raghubanshi, A. S., and Singh, J. S. (2001a) Foliar demand and resource economy of nutrients in dry tropical forest species. J. Vegetation Science, 12, 5–14.Google Scholar
  82. Lal, M., Nozawa, T., Emori, S., Harasawa, H., Takahashi, K., Kimoto, M., Abe-Ouchi, A., Nakajima, T., Takemura, T., and Numaguti, A. (2001b) Future climate change:Google Scholar
  83. Implications for Indian summer monsoon and its variability. Current Science, 81, 1196–1207.Google Scholar
  84. Lal, M., Harasawa, H., and Takahashi, K. (2002) Future climate change and its impact over small island states. Climate Research, 19, 1779–192.Google Scholar
  85. Lashof, D. A. and Ahuja, D. R. (1990) Relative contributions of greenhouse gas emissions to global warming. Nature, 344, 529–531.Google Scholar
  86. Lawrence, D. (2005) Regional-scale variation in litter production and seasonality in tropical dry forests of southern Mexico. Biotropica, 37, 561–570.Google Scholar
  87. Lewis, S. L., Malhi, Y., and Phillips, O. L. (2004) Fingerprinting the impacts of global change on tropical forests. Philosophical Trans. Royal Society London B, 359, 437–462.Google Scholar
  88. Liptzin, D. and Silver, W. L. (2009) Effects of carbon additions on iron reduction and phosphorus availability in a humid tropical forest soil. Soil Biology and Biochemistry, 41, 1696–1702.Google Scholar
  89. Lloyd, J., Bird, M. I., Veenendaal, E. M., and Kruijt, B. (2001) Should phosphorus availability be constraining moist tropical forest responses to increasing CO2 concentrations? In: E. D. Schulze (Ed.), Global Biogeochemical Cycles in the Climate System, pp. 95–114. Academic Press, San Diego, CA.Google Scholar
  90. Lodge, D. (1993) Nutrient cycling by fungi in wet tropical forests. In: S. Isaac, J. C. Frankland, R. Watling, and A. J. S. Whalley (Eds.), Aspects of Tropical Mycology. Cambridge University Press, Cambridge, U.K.Google Scholar
  91. Lodge, D. J., McDowell, W. H., and McSwiney C. P. (1994) The importance of nutrient pulses in tropical forests. Trends in Ecology and Evolution, 9, 384–387.Google Scholar
  92. Lohse, K. A. and Matson, P. (2005) Consequences of nitrogen additions for soil losses from wet tropical forests. Ecological Applications, 15, 1629–1648.Google Scholar
  93. Luizao, R. C. C., Bonde, T. A., and Rosswell, T. (1992) Seasonal variation of soil microbial biomass: The effects of clearfelling a tropical rainforest and establishment of a pasture in the central Amazon. Soil Biology and Biochemistry, 24, 805–813.Google Scholar
  94. Malhi, Y. and Wright, J. (2004) Spatial patterns and recent trends in the climate of tropical rainforest regions. Philosophical Trans. Royal Society London B—Biological Sciences, 359, 311–329.Google Scholar
  95. Marrs, R. H., Proctor, J., Heaney, A., and Mountford, M. D. (1988) Changes in soil nitrogenmineralization and nitrification along an altitudinal transect in tropical rain forest in Costa Rica. J. Ecology, 76, 466–482.Google Scholar
  96. Martnez-Yrzar, A. (1995) Biomass distribution and primary productivity of tropical dry forests. In: S. H. Bullock, H. A. Mooney, and E. Medina (Eds.), Seasonally Dry Tropical Forests. Cambridge University Press, Cambridge, U.K., pp. 326–345.Google Scholar
  97. McGill, W. B. and Cole, C. V. (1981) Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma, 26, 267–286.Google Scholar
  98. McGroddy, M. E., Daufresne, T., and Hedin, L.O. (2004a) Scaling of C:N: P stoichiometry in forest ecosystems worldwide: Implications of terrestrial Redfield-type ratios. Ecology, 85, 2390–2401.Google Scholar
  99. McGroddy, M. E., Silver, W. L., and de Oliveira, R. C. (2004b) The effect of phosphorus availability on decomposition dynamics in a seasonal lowland Amazonian forest. Ecosystems, 7, 172–179.Google Scholar
  100. McGroddy, M. E., Silver, W. L., de Oliveira Jr., R. C., de Mello, W. Z., and Keller, M. (2008) Retention of phosphorus in highly weathered soils under a lowland Amazonian forest ecosystem. J. Geophys. Res.,, 113, G04012, doi: 10.1029/2008JG000756.Google Scholar
  101. McKane, R. B., Rastetter, E. B., Melillo, J. M., Shaver, G. R., Hopkinson, C. S., Fernandes, D. N., Skole, D. L., and Chomentowski, W. H. (1995) Effects of global change on carbon storage in tropical forests of South America. Global Biogeochemical Cycles, 9, 329–350.Google Scholar
  102. McLaughlin, J. F., Hellmand, J. J., Boggs, C. L., and Ehrlich, P. R. (2002) Climate change hastens population extinctions. Proceedings of the National Academy of Sciences U.S.A, 99, 6070–6074.Google Scholar
  103. Melillo, J. M., McGuire, A. D., Kicklighter, D. W., Moore III, B., Vorosmarty, C. J., and Schloss, A. L. (1993) Global climate change and terrestrial net primary production. Nature, 363, 234–240.Google Scholar
  104. Miller, A. J., Schuur, A. E. G., and Chadwick, O. A. (2001) Redox control of phosphorus pools in Hawaiian montane forest soils. Geoderma, 102, 219–237.Google Scholar
  105. Miller, S. D., Goulden, M. L., Menton, M. C., da Rocha, H. R., Freitas, H. C., Silva Figueira, A. M., and Dias de Sousa, C. A. (2004) Biometric and micrometeorological measurements of tropical forest carbon balance. Ecological Applications, 14, S114–S126.Google Scholar
  106. Mirmanto, E., Proctor, J., Green, J., Nagy, L., and Suriantata (1999) Effects of nitrogen and phosphorus fertilization in a lowland, evergreen rainforest. Philosophical Trans. Royal Society London B, 354, 1825–1829.Google Scholar
  107. Miyasaka, S. C. and Habte, M. (2001) Plant mechanisms and mycorrhizal symbioses to increase phosphorus uptake efficiency. Communications in Soil Science and Plant Analysis, 32, 1101–1147.Google Scholar
  108. Mo, J., Zhang, W., Zhu, W., Gundersen, P., Fang, Y., Li, D., and Wang, H. (2008) Nitrogen addition reduces soil respiration in a mature tropical forest in southern China. Global Change Biology, 14, 403–412.Google Scholar
  109. Nepstad, D. C., Moutinho, P., Dias-Filho, M. B., Davidson, E., Cardinot, G., Markewitz, D., Figueiredo, R., Vianna, N., Chambers, J., Ray, D., et al. (2002) The effects of partial throughfall exclusion on canopy processes, aboveground production and biogeochemistry of an Amazon forest. J. Geophys. Res., doi: 10.1029/2001JD000360.Google Scholar
  110. Newbery, D. M., Chuyong, G. B., Green, J. J., Songwe, N. C., Tchuenteu, F., and Zimmerman, L. (2002) Does low phosphorus supply limit seedling establishment and tree growth in groves of ectomycorrhizal trees in a central African rainforest. NewGoogle Scholar
  111. Phytologist, 156, 287–311.Google Scholar
  112. Norby, R. J. and Jackson, R. B. (2000) Root dynamics and global change: Seeking an ecosystem perspective. New Phytologist, 147, 3–12.Google Scholar
  113. Norby, R. J., Wullschleger, S. D., Gunderson, C. A., Johnson, D. W., and Ceulemans, R. (1999) Tree responses to rising CO2: Implications for the future forest. Plant, Cell and Environment, 22, 683–714.Google Scholar
  114. Oechel, W. C., Vourlitis, G. L., and Hastings, S. J. (1998) The effects of water table manipulation on the net CO2 flux of wet sedge tundra ecosystems. Global Change Biology, 4, 77–90.Google Scholar
  115. Ometto, J. P. H. B., Nobre, A. D., Rocha, H. R., Artaxo, P., and Martinelli, L. A. (2005) Amazonia and the modern carbon cycle: Lessons learned. Oecologia, 143, 483–500.Google Scholar
  116. Ostertag, R. (2001) Effects of nitrogen and phosphorus availability on fine root dynamics in Hawaiian montane forests. Ecology, 82, 485–499.Google Scholar
  117. Ostertag, R. and Hobbie, S. E. (1999) Early stages of root and leaf decomposition in Hawaiian forests: Effects of nutrient availability. Oecologia, 121, 564–573.Google Scholar
  118. Paoli, G. D., Curran, L. M., and Silk, J. W. F. (2008) Soil nutrients affect spatial patterns of aboveground biomass and emergent tree density in southwestern Borneo. Oecologia, 155, 287–299.Google Scholar
  119. Papatheodorou, E. M., Stamou, G. P., and Giannotaki, A. (2004) Response of soil chemical and biological variables to small and large scale changes in climatic factors. Pedobiologia, 48, 329–338.Google Scholar
  120. Peretyazhko, T. and Sposito, G. (2005) Iron (III) reduction and phosphorous solubilization in humid tropical forest soils. Geochimica et Cosmochimica Acta, 69, 3643–3652.Google Scholar
  121. Perrott, K. W., Sarathchandra, S. U., and Waller, J. E. (1990) Seasonal storage and release of phosphorus and potassium by organic matter and the microbial biomass in a highproducing pastoral soil. Australian J. Soil Research, 28, 593–608.Google Scholar
  122. Phillips, O. L., Malhi, Y., Higuchi, N., Laurence, L. F., Nunez, V. P., Vasquez, M. R., Laurence, S. G., Ferreira, L. V., Stern, M., Brown, S., and Grace, J. (1998) Changes in the carbon balance of tropical forests: Evidence from long-term plots. Science, 282, 439– 442.Google Scholar
  123. Pimm, S. L. and Sugden, A. M. (1994) Tropical diversity and global change. Science, 263, 933–934.Google Scholar
  124. Porder, S. and Chadwick, O. A. (2009) Climate and soil age constraints on nutrient uplift and retention by plants. Ecology, 90, 623–636.Google Scholar
  125. Powers, J. S., Treseder, K. K., and Lerdau, M. T. (2005) Fine roots, arbuscular mycorrhizal hyphae and soil nutrients in four Neotropical rain forests: Patterns across large geographic distances. New Phytologist, 165, 913–921.Google Scholar
  126. Powers, J. S., Montgomery, R. A., Adair, E. C., Brearley, F. Q., DeWalt, S. J., Castanho, C. T., Chave, J., Deinert, E., Ganzhorn, J. U., Gilbert, M. E. et al. (2009) Decomposition in tropical forests: A pan-tropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient. J. Ecology, 97, 801–811.Google Scholar
  127. Pregitzer, K. S., King, J. S., Burton, A. J., and Brown, S. E. (2000) Responses of tree fine roots to temperature. New Phytologist, 147, 105–115.Google Scholar
  128. Pritchard, S. G. and Rogers, H. H. (2000) Spatial and temporal deployment of crop roots in CO2-enriched environments. New Phytologist, 147, 55–71.Google Scholar
  129. Raich, J. W. and Schlesinger, W. H. (1992) The global carbon dioxide flux in soil respiration and relationship to vegetation and climate. Tellus, 44B, 81–99.Google Scholar
  130. Read, L. and Lawrence, D. (2003) Litter nutrient dynamics during succession in dry tropical forests of the Yucatan: Regional and seasonal effects. Ecosystems, 6, 747–761.Google Scholar
  131. Rice, A. H., Hammond Pyle, E., Saleska, S. R., Hutyra, L., Palace, M., Keller, M., de Camargo, P. B., Portilho, K., Marques, D. F., and Wofsy, S. C. (2004) Carbon balance and vegetation dynamics in an old-growth Amazonian forest. Ecological pplications, 14, Supplement: LBA Experiment, 55–71.Google Scholar
  132. Riley, R. H. and Vitousek, P. M. (1995) Nutrient dynamics and nitrogen trace gas flux during ecosystem development in montane rain forest. Ecology, 76, 292–304.Google Scholar
  133. Rustad, L., Campbell, J., Marion, G., Norby, R., Mitchell, M., Hartley, A., Cornelissen, J., Gurevitch, J., and GCTE-NEWS (2001)Ameta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia, 126, 543–562.Google Scholar
  134. Sanchez, P. A. (1976) Properties and Management of Soils in the Tropics. John Wiley & Sons, New York.Google Scholar
  135. Santiago, L. S. and Mulkey, S. S. (2005) Leaf productivity along a precipitation gradient in lowland Panama: Patterns from leaf to ecosystem. Trees: Structure and Function, 19, 349–356.Google Scholar
  136. Santiago, L. S., Schuur, E. A., and Silvera, K. (2005) Nutrient cycling and plant–soil feedbacks along a precipitation gradient in lowland Panama. J. Tropical Ecology, 21, 461–470. Schimel, J. P. and Gulledge, J. (1998) Microbial community structure and global trace gases. Global Change Biology, 4, 745–758.Google Scholar
  137. Schuur, E. A. G. (2001) The effect of water on decomposition dynamics in mesic to wet Hawaiian montane forests. Ecosystems, 4, 259–273.Google Scholar
  138. Silver, W. L. (1998) The potential effects of elevated CO2 and climate change on tropical forest soils and biogeochemical cycling. Climatic Change, 39, 337–361.Google Scholar
  139. Silver, W. L. and Miya, R. (2001) Global patterns in root decomposition: Comparisons of climate and litter quality effects. Oecologia, 129, 407–419.Google Scholar
  140. Silver, W. L. and Vogt, K. A. (1993) Fine root dynamics following single and multiple disturbances in a subtropical wet forest ecosystem. J. Ecology, 8, 729–738.Google Scholar
  141. Silver, W. L., Lugo, A. E., and Keller, M. (1999) Soil oxygen availability and biogeochemistry along rainfall and topographic gradients in upland wet tropical forest soils. Biogeochemistry, 44, 301–328.Google Scholar
  142. Silver, W. L., Herman, D. J., and Firestone, M. K. (2001) Dissimilatory nitrate reduction to ammonium in upland tropical forest soils. Ecology, 82, 2410–2416.Google Scholar
  143. Silver, W. L., Thompson, A. W., McGroddy, M. E., Varner, R. K., Dias, J. D., Silva, H., Crill, P. M., and Keller, M. (2005a) Fine root dynamics and trace gas fluxes in two lowland tropical forest soils. Global Change Biology, 11, 290–306.Google Scholar
  144. Silver, W. L., Thompson, A. W., Reich, A., Ewel, J. J., and Firestone, M. K. (2005b) Nitrogen cycling in tropical plantation forests: Potential controls on nitrogen retention. Ecological Applications, 15, 1604–1614.Google Scholar
  145. Silver, W. L., Thompson, A. W., Herman, D. J., and Firestone, M. K. (2010) Nitrogen cycling in upper montane tropical forests: Is there evidence for limitation to nitrogen mineralization? In: L. S. Hamilton and P. Bubb (Eds.), Forests in the Mist: Science for Conserving and Managing Tropical Montane Cloud Forests. University of Hawaii Press, Honolulu.Google Scholar
  146. Sollins, P. and Radulovich, R. (1988) Effects of soil physical structure on solute transport in a weathered tropical soil. Soil Science Society of America J., 52, 1168–1173.Google Scholar
  147. Sollins, P., Robertson, G. P., and Uehara, G. (1988) Nutrient mobility in variable- and permanent-charge soils. Biogeochemistry, 6, 181–199.Google Scholar
  148. Sowerby, A., Emmett, B., Beier, C., Tietema, A., Penuelas, J., Estiarte, M., van Meeteren, M. J. M., Hughes, S., and Freeman, C. (2005) Microbial community changes in heathland soil communities along a geographical gradient: Interaction with climate change manipulations. Soil Biology and Biochemistry, 37, 1805–1813.Google Scholar
  149. Staddon, P. L. and Fitter, A. H. (1998) Does elevated atmospheric carbon dioxide affect arbuscular mycorrhizas? Trends in Ecology and Evolution, 13, 455–458.Google Scholar
  150. Staddon, P. L., Gregersen, R., and Jakobsen, I. (2004) The response of two Glomus mycorrhizal fungi and a fine endophyte to elevated atmospheric CO2, soil warming and drought. Global Change Biology, 10, 1909–1921.Google Scholar
  151. Steudler, P. A., Melillo, J. M., Feigl, B. J., Neill, C., Piccolo, M. C., and Cerri, C. C. (1996) Consequences of forest-to-pasture conversion on CH4 fluxes in the Brazilian Amazon Basin. J. Geophys. Res., 101, 18547–18554.Google Scholar
  152. Stevenson, F. J. and Cole. C.V. (1999) The phosphorus cycle. In: F. J. Stevenson and C. V. Cole (Eds.), Cycles of Soil: Carbon, Nitrogen, Phosphorus, Sulfur, Micronutrients, Second Edition. John Wiley & Sons, New York.Google Scholar
  153. Tate, K. R. (1985) Soil phosphorus. In: D. Vaughn and R. E. Malcolm (Eds.), Soil Organic Matter and Biological Activity (Developments in Plant and Soil Sciences Series). Martinus Nijhoff/Dr. W. Junk Publishers, Boston.Google Scholar
  154. Teh, Y. A., Silver, W. L., and Conrad, M. E. (2005) Oxygen effects on methane production and oxidation in humid tropical forest soils. Global Change Biology, 11, 1283–1297.CrossRefGoogle Scholar
  155. Templer, P. H., Silver, W. L., Pett-Ridge, J., DeAngelis, K., and Firestone, M. K. (2008) Plant and microbial controls on nitrogen retention and loss in a humid tropical forest. Ecology, 89, 3030–3040.CrossRefGoogle Scholar
  156. Tian, H., Melillo, J. M., Kicklighter, D. W., McGuire, A. D., Helfrich III, J. V. K., Moore III, B., and Vorosmarty, C. J. (1998) Effect of interannual climate variability on carbon storage in Amazonian ecosystems. Nature, 396, 664–667.CrossRefGoogle Scholar
  157. Tiessen, H., Cuevas, E., and Chacon, P. (1994) The role of soil organic matter in sustaining soil fertility. Nature, 371, 783–785.CrossRefGoogle Scholar
  158. Tingey, D. T., Phillips, D. L., and Johnson, M. G. (2000) Elevated CO2 and conifer roots: Effects on growth, life span and turnover. New Phytologist, 147, 87–103.CrossRefGoogle Scholar
  159. Townsend, A. R., Vitousek, P. M., and Holland, E. A. (1992) Tropical soils could dominate the short-term carbon cycle feedbacks to increased global temperatures. Climatic Change, 22, 293–303.CrossRefGoogle Scholar
  160. Trumbore, S., da Costa, E. S., Nepstad, D. C., de Camargo, P. B., Martinelli, L. A., Ray, D., Restom, T., and Silver, W. (2006) Dynamics of fine root carbon in Amazonian tropical ecosystems and the contribution of roots to soil respiration. Global Change Biology, 12, 217–229.CrossRefGoogle Scholar
  161. Uehara, G. (1995) Management of isoelectric soils of the humid tropics. In: R. Lal, J. Kimble, E. Levine, and B. A. Stewart (Eds.), Soil Management and the Greenhouse Effect, Advances in Soil Science, pp. 271–278. CRC Press, Boca Raton, FL.Google Scholar
  162. van Haren, J. L. M., Handley, L. L., Biel, K. Y., Kudeyarov, V. N., McLain, J. E. T., Martens, D. A., and Colodner, D. C. (2005) Drought-induced nitrous oxide flux dynamics in an enclosed tropical forest. Global Change Biology, 11, 1247–1257.CrossRefGoogle Scholar
  163. van Noordwijk, M., Cerri, C., Woomer, P. L., Nugroho, K., and Bernoux, M. (1997) Soil carbon dynamics in the humid tropical forest zone. Geoderma, 79, 187–225.CrossRefGoogle Scholar
  164. Vitousek, P. M. (1984) Litterfall, nutrient cycling and nutrient limitation in tropical forests. Ecology, 65, 285–298.CrossRefGoogle Scholar
  165. Vitousek, P. M. and Howarth, R. W. (1991) Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry, 13, 87–115.CrossRefGoogle Scholar
  166. Vitousek, P. M. and Matson, P. A. (1988) Nitrogen transformations in a range of tropical forest soils. Soil Biology and Biochemistry, 20, 361–367CrossRefGoogle Scholar
  167. Vitousek, P. M. and Sanford Jr., R. L. (1986) Nutrient cycling in moist tropical forest. Annual Review of Ecology and Systematics, 17, 137–167.CrossRefGoogle Scholar
  168. Vourlitis, G. L. and Oechel, W. C. (1997) Landscape-scale CO2, H2O vapor and energy flux of moist–wet coastal tundra ecosystems over two growing seasons. J. Ecology, 85, 575–590.CrossRefGoogle Scholar
  169. Walker, T. W. and Syers, J. K. (1976) The fate of phosphorus during pedogenesis. Geoderma, 15, 1–19.CrossRefGoogle Scholar
  170. Wang, Y. P. and Polglase, P. J. (1995) Carbon balance in the tundra, boreal forest and humid tropical forest during climate-change: Scaling-up from leaf physiology and soil carbon dynamics. Plant, Cell and the Environment, 18, 1226–1244.CrossRefGoogle Scholar
  171. Wieder, R. K. and Wright, S. J. (1995) Tropical forest litter dynamics and dry season irrigation on Barro-Colorado Island, Panama. Ecology, 76, 1971–1979.CrossRefGoogle Scholar
  172. Williams, M. R., Fisher, T. R., and Melack, J. H. (1997) Chemical composition and deposition of rain in the central Amazon, Brazil. Atmospheric Environment, 31, 207–217.CrossRefGoogle Scholar
  173. Wood, T. E., Lawrence, D., and Clark, D. A. (2005) Variation in leaf litter nutrients of a Costa Rican rain forest is related to precipitation. Biogeochemistry, 73, 417–437.CrossRefGoogle Scholar
  174. Wright, S. J. (1991) Seasonal drought and the phenology of understory shrubs in a tropical moist forest. Ecology, 72, 1643–1657.CrossRefGoogle Scholar
  175. Wright, I. J. and Westoby, M. (2002) Leaves at low versus high rainfall: Coordination of structure, lifespan and physiology. New Phytologist, 155, 403–416.CrossRefGoogle Scholar
  176. Wright, I. J., Reich P. B., and Westoby, M. (2001) Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Functional Ecology, 15, 423–434.CrossRefGoogle Scholar
  177. Yavitt, J. B. and Wright, S. J. (2001) Drought and irrigation effects on fine root dynamics in a tropical moist forest, Panama. Biotropica, 33, 421–434.Google Scholar
  178. Yavitt, J. B. and Wright, S. J. (2002) Charge characteristics of soil in a lowland tropical moist forest in Panama in response to dry-season irrigation. Australian J. Soil Research, 40, 269–281.CrossRefGoogle Scholar
  179. Zak, D. R., Pregitzer, K. S., Curtis, P. S., and Holmes, W. E. (2000a) Atmospheric CO2 and the composition and function of soil microbial communities. Ecological Applications, 10, 47–59.Google Scholar
  180. Zak, D. R., Pregitzer, K. S., King, J. S., and Homes, W. E. (2000b) Elevated atmospheric CO2, fine roots and the response of soil microorganisms: A review and hypothesis. New Phytologist, 147, 201–222.CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of BiologyWest Virginia UniversityMorgantownUSA
  2. 2.Ecosystem Sciences Division, Department of Environmental Science, Policy, and ManagementUniversity of CaliforniaBerkeleyUSA

Personalised recommendations