The Impact of Secondary Notation on Process Model Understanding

  • Matthias Schrepfer
  • Johannes Wolf
  • Jan Mendling
  • Hajo A. Reijers
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 39)

Abstract

Models of business processes are usually created and presented using some visual notation. In this way, one can express important activities, milestones, and actors of a process using interconnected graphical symbols. While it has been established for other types of models that their graphical layout is a factor in making sense of these, this aspect has not been investigated in the business process modeling area. This paper proposes a set of propositions about the effects of the secondary notation, which entails layout, on process model comprehension. While individual graphical readership and pattern recognition skills are known mediators in interpreting visual cues, these propositions take expertise into account. The goal of this paper is to lay the foundation of follow-up, empirical investigations to challenge these propositions.

Keywords

process modeling secondary notation comprehension modeling expertise 

References

  1. 1.
    van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow Patterns. Distributed and Parallel Databases 14(1), 5–51 (2003)CrossRefGoogle Scholar
  2. 2.
    van der Aalst, W.M.P., Lassen, K.B.: Translating unstructured workflow processes to readable BPEL: Theory and implementation. Information and Software Technology 50(3), 131–159 (2008)CrossRefGoogle Scholar
  3. 3.
    Agarwal, R., De, P., Sinha, A.P.: Comprehending object and process models: An empirical study. IEEE Transactions on Software Engineering 25(4), 541–556 (1999)CrossRefGoogle Scholar
  4. 4.
    Rolón Aguilar, E., García, F., Ruiz, F., Piattini, M.: An exploratory experiment to validate measures for business process models. In: First International Conference on Research Challenges in Information Science, RCIS (2007)Google Scholar
  5. 5.
    Aranda, J., Ernst, N., Horkoff, J., Easterbrook, S.: A framework for empirical evaluation of model comprehensibility. In: MISE 2007: Proceedings of the International Workshop on Modeling in Software Engineering, Washington, DC, USA, p. 7. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  6. 6.
    Bandara, W., Gable, G.G., Rosemann, M.: Critical success factors of business process modeling (2007)Google Scholar
  7. 7.
    Batra, D., Wishart, N.A.: Comparing a rule-based approach with a pattern-based approach at different levels of complexity of conceptual data modelling tasks. Int. J. Hum.-Comput. Stud. 61(4), 397–419 (2004)CrossRefGoogle Scholar
  8. 8.
    Bonner, S.E., Pennington, N.: Cognitive processes and knowledge as determinants of auditor expertise. Journal of Accounting Literature 10(1), 1–50 (1991)Google Scholar
  9. 9.
    Burton-Jones, A., Meso, P.: How good are these uml diagrams? an empirical test of the wand and weber good decomposition model. In: Applegate, L., Galliers, R., DeGross, J.I. (eds.) Proceedings of the Twenty-third International Conference on Information Systems (ICIS), pp. 101–114 (2002)Google Scholar
  10. 10.
    Byron, L., Wattenberg, M.: Stacked graphs – geometry & aesthetics. IEEE Transactions on Visualization and Computer Graphics 14(6), 1245–1252 (2008)CrossRefGoogle Scholar
  11. 11.
    Cardoso, J.: Evaluating Workflows and Web Process Complexity. In: Workflow Handbook 2005, pp. 284–290. Future Strategies, Inc. (2005)Google Scholar
  12. 12.
    Chase, W.G., Simon, H.A.: The mind’s eye in chess. Visual Information Processing (1973)Google Scholar
  13. 13.
    Chattratichart, J., Kuljis, J.: Some Evidence for Graphical Readership, Paradigm Preference, and the Match-Mismatch Conjecture in Graphical Programs. In: 13th Workshop of the Psychology of Programming Interest Group (2001)Google Scholar
  14. 14.
    Davies, I., Green, P., Rosemann, M., Indulska, M., Gallo, S.: How do practitioners use conceptual modeling in practice? Data & Knowledge Engineering 58(3), 358–380 (2006)CrossRefGoogle Scholar
  15. 15.
    Dehnert, J., van der Aalst, W.M.P.: Bridging The Gap Between Business Models And Workflow Specifications. International J. Cooperative Inf. Syst. 13(3), 289–332 (2004)CrossRefGoogle Scholar
  16. 16.
    Ericsson, K.A., Lehmann, A.C.: Expert and exceptional performance: Evidence of maximal adaptation to task constraints. Annual Review of Psychology 47(1), 273–305 (1996)CrossRefGoogle Scholar
  17. 17.
    Gilmore, D.J., Green, T.R.G.: Comprehension and recall of miniature programs. International Journal of Man-Machine Studies 21(1), 31–48 (1984)CrossRefGoogle Scholar
  18. 18.
    Green, T.M., Ribarsky, W., Fisher, B.: Building and applying a human cognition model for visual analytics. Information Visualization 8(1), 1–13 (2009)CrossRefGoogle Scholar
  19. 19.
    Hahn, J., Kim, J.: Why are some diagrams easier to work with? effects of diagrammatic representation on the cognitive integration process of systems analysis and design. ACM Transactions on Computer-Human Interaction 6 (1999)Google Scholar
  20. 20.
    Horowitz, P., Hill, W.: The art of electronics, 2nd edn. University Press, Cambridge (1989)Google Scholar
  21. 21.
    Reijers, H.A., Seese, D., Melcher, J., Mendling, J.: On measuring the understandability of process models. In: Proceedings of BPM Workshops 2009 - ER-BPM Workshop. Springer, Heidelberg (to appear)Google Scholar
  22. 22.
    Kovalyov, A., Esparza, J.: A polynomial algorithm to compute the concurrency relation of free-choice signal transition graphs. In: Prof. of the International Workshop on Discrete Event Systems, WODES 1996, Edinburgh, pp. 1–6 (1996)Google Scholar
  23. 23.
    Lakhotia, A.: Understanding someone else’s code: Analysis of experiences. Journal of Systems and Software 23(3), 269–275 (1993)CrossRefGoogle Scholar
  24. 24.
    Mendling, J., Reijers, H.A., Cardoso, J.: What makes process models understandable? In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 48–63. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Mendling, J., Strembeck, M.: Influence factors of understanding business process models. In: Abramowicz, W., Fensel, D. (eds.) BIS 2008. LNBIP, vol. 7, pp. 142–153. Springer, Heidelberg (2008)Google Scholar
  26. 26.
    Mendling, J.: Metrics for Process Models: Empirical Foundations of Verification, Error Prediction, and Guidelines for Correctness. LNBIP, vol. 6. Springer, Heidelberg (2008)Google Scholar
  27. 27.
    Moher, T.G., Mak, D.C., Blumenthal, B., Leventhal, L.M.: Comparing the Comprehensibility of Textual and Graphical Programs: The Case of Petri Nets. In: Cook, C.R., Scholtz, J.C., Spohrer, J.C. (eds.) Empirical Studies of Programmers: Fifth Workshop: Papers Presented at the Fifth Workshop on Empirical Studies of Programmers, December 3-5, pp. 137–161. Ablex Pub. (1993)Google Scholar
  28. 28.
    Petre, M.: Why looking isn’t always seeing: readership skills and graphical programming. Commun. ACM 38(6), 33–44 (1995)CrossRefGoogle Scholar
  29. 29.
    Petre, M.: Cognitive dimensions ’beyond the notation’. J. Vis. Lang. Comput. 17(4), 292–301 (2006)CrossRefGoogle Scholar
  30. 30.
    Purchase, H.C.: Which aesthetic has the greatest effect on human understanding? In: Di Battista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  31. 31.
    Purchase, H.C., McGill, M., Colpoys, L., Carrington, D.: Graph drawing aesthetics and the comprehension of uml class diagrams: an empirical study. In: APVis 2001: Proceedings of the 2001 Asia-Pacific symposium on Information visualisation, Darlinghurst, Australia, pp. 129–137. Australian Computer Society, Inc. (2001)Google Scholar
  32. 32.
    Recker, J., Dreiling, A.: Does it matter which process modelling language we teach or use? an experimental study on understanding process modelling languages without formal education. In: Toleman, M., Cater-Steel, A., Roberts, D. (eds.) 18th Australasian Conference on Information Systems, Toowoomba, Australia, pp. 356–366. The University of Southern Queensland (2007)Google Scholar
  33. 33.
    Reijers, H.A., Mendling, J.: Modularity in process models: Review and effects. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 20–35. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  34. 34.
    Russell, N., ter Hofstede, A.H.M., van der Aalst, W.M.P., Mulyar, N.: Workflow Control-Flow Patterns: A Revised View. BPM Center Report BPM-06-22, BPMcenter.org (2006)Google Scholar
  35. 35.
    Sarshar, K., Loos, P.: Comparing the control-flow of EPC and petri net from the end-user perspective. In: van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS, vol. 3649, pp. 434–439. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  36. 36.
    TheFreeDictionary.com. Expertise (2009)Google Scholar
  37. 37.
    White, S.A.: Introduction to BPMN. BPTrends (July 2004)Google Scholar
  38. 38.
    zur Muehlen, M., Recker, J.: How much language is enough? theoretical and practical use of the business process modeling notation. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 465–479. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2009

Authors and Affiliations

  • Matthias Schrepfer
    • 1
  • Johannes Wolf
    • 1
  • Jan Mendling
    • 1
  • Hajo A. Reijers
    • 2
  1. 1.Humboldt-Universität zu BerlinBerlinGermany
  2. 2.Eindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations