Simple Critical Ultrasound Considering Hemodynamic Therapy: Our Limited Investigation

Chapter

Abstract

The bedside work of the intensivist is to provide adequate oxygen output to tissues in acute circulatory failure. The present chapter was the main reason for launching this new edition. We have taken care to make it as moderate and open as possible to any criticism. We just invite different thinking by introducing some thought processes in a field where no perfect “gold standards” are available. For this, we will propose the consideration of a parameter that can be as debatable as all the other tools, but whose particularity is to assess directly the question of fluid therapy. Evolution of concepts considering hemodynamic therapy in the critically iii Before intensive care units were created (in the 1950s–60s), patients with circulatory failure died. The physicians in charge of these new units did their best, helped only by the central venous pressure (CVP), until the Swan-Ganz catheter was developed in the early 1970s [1].

References

  1. 1.
    Swan HJ, Ganz W, Forrester J, Marcus H, Diamond G, Chonette D (1970) Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. N Engl J Med 283:447–451PubMedCrossRefGoogle Scholar
  2. 2.
    Krausz MM, Perel A, Eimerl D, Cotev S (1977) Cardiopulmonary effects of volume loading in patients in septic shock. Ann Surg 185:429–434PubMedCrossRefGoogle Scholar
  3. 3.
    Packman RI, Rackow EC (1983) Optimum left heart filling pressure during fluid resuscitation of patients with hypovolemic and septic shock. Crit Care Med 11:165–169PubMedCrossRefGoogle Scholar
  4. 4.
    Zion MM, Balkin MM, Rosenmann D, Goldbourt U, Reicher-Reiss H, Kaplinsky E, Behar S (1990) Use of the pulmonary artery catheter in patients with acute myocardial infarction. Chest 98:1331–1335PubMedCrossRefGoogle Scholar
  5. 5.
    Mimoz O, Rauss A, Rekik N, Brun-Buisson C, Lemaire F, Brochard L (1994) Pulmonary artery catheterization in critically ill patients: a prospective analysis of outcome changes associated with catheter prompted changes in therapy. Crit Care Med 22:573–579PubMedCrossRefGoogle Scholar
  6. 6.
    Connors AF Jr, Speroff T, Dawson NV, Thomas C, Harrell FE Jr, Wagner D, Desbiens N, Goldman L, Wu AW, Califf RM, Fulkerson WJ Jr, Vidaillet H, Broste S, Bellamy P, Lynn J, Knaus WA (1996) The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. J Am Med Assoc 276:889–897CrossRefGoogle Scholar
  7. 7.
    Wagner JG, Leatherman JW (1998) Right ventricular end diastolic volume as a predictor of the hemodynamic response to a fluid challenge. Chest 113:1048–1054PubMedCrossRefGoogle Scholar
  8. 8.
    Wilson J, Woods I, Fawcett J, Whall R, Dibb W, Morris C, McManus E (1999) Reducing the risk of major elective surgery: randomized controlled trial of preoperative optimisation of oxygen delivery. Br Med J 318:1099–1103CrossRefGoogle Scholar
  9. 9.
    Boldt J (2000) Volume therapy in the intensive care patient – we are still confused, but …. Intensive Care Med 26:1181–1192PubMedCrossRefGoogle Scholar
  10. 10.
    Rhodes A, Cusack RJ, Newman PJ, Grounds RM, Bennett ED (2002) A randomised, controlled trial of the pulmonary artery catheter in critically ill patients. Intensive Care Med 28:256–264PubMedCrossRefGoogle Scholar
  11. 11.
    Richard C, Warszawski J, Anguel N, Deye N, Combes A, Barnoud D, Boulain T, Lefort Y, Fartoukh M, Baud F, Boyer A, Brochard L, Teboul JL (2003) French Pulmonary Artery Catheter Study Group – early use of the pulmonary artery catheter and outcomes in patients with shock and acute respiratory distress syndrome: a randomized controlled trial. J Am Med Assoc 290:2713–2720CrossRefGoogle Scholar
  12. 12.
    Sandham JD, Hull RD, Brant RF, Knox L, Pineo GF, Doig CJ, Laporta DP, Viner S, Passerini L, Devitt H, Kirby A, Jacka M (2003) A randomized, controlled trial of the use of pulmonary artery catheters in high-risk surgical patients. New Engl J Med 348:5–14PubMedCrossRefGoogle Scholar
  13. 13.
    Monnet X, Richard C, Teboul JL (2004) The pulmonary artery catheter in critically ill patients. Does it change outcome? Minerva Anestesiol 70:219–224PubMedGoogle Scholar
  14. 14.
    Shah MR, Hasselblad V, Stevenson LW, Binanay C, O’Connor CM, Sopko G, Califf RM (2005) Impact of the pulmonary artery catheter in critically ill patients: meta-analysis of randomized clinical trials. J Am Med Assoc 294:1664–1670CrossRefGoogle Scholar
  15. 15.
    Sakr Y, Vincent JL, Reinhart K, Payen D, Wiedermann CJ, Zandstra DF, Sprung CL (2005) Use of the pulmonary artery catheter is not associated with worse outcome in the ICU. Chest 128:2722–2731PubMedCrossRefGoogle Scholar
  16. 16.
    Simini B (2005) Pulmonary artery catheters in intensive care. Lancet 366:435–437PubMedCrossRefGoogle Scholar
  17. 17.
    Harvey S, Harrison DA, Singer M, Ashcroft J, Jones CM, Elbourne D, Brampton W, Williams D, Young D, Rowan K (2005) PAC-Man study collaboration. Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-Man): a randomised controlled trial. Lancet 366(9484):472–477PubMedCrossRefGoogle Scholar
  18. 18.
    Osman D, Ridel C, Rey P, Monnet X, Anguel N, Richard C, Teboul JL (2007) Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge. Crit Care Med 35:64–68PubMedCrossRefGoogle Scholar
  19. 19.
    Gnaegi A, Feihl F, Perret C (1997) Intensive care physicians insufficient knowledge of right-heart catheterization at the bedside: time to act? Crit Care Med 25:213–220PubMedCrossRefGoogle Scholar
  20. 20.
    Squara P, Bennett D, Perret C (2002) Pulmonary artery catheter: does the problem lie in the users? Chest 121:2009–2015PubMedCrossRefGoogle Scholar
  21. 21.
    Pinsky MR, Vincent JL (2005) Let us use the pulmonary artery catheter correctly and only when we need it. Crit Care Med 33:1119–1122Google Scholar
  22. 22.
    Jardin F, Valtier B, Beauchet DO, Bourdarias JP (1994) Invasive monitoring combined with two-dimensional echocardiographic study in septic shock. Intensive Care Med 20:550–554PubMedCrossRefGoogle Scholar
  23. 23.
    Benjamin E, Oropello JM, Stein JS (1996) Transesophageal echocardiography in the management of the critically ill patient. Curr Surg 53:137–141Google Scholar
  24. 24.
    Tudor C, Denault A, Guimond JG, Couture P et al (2002) The hemodynamically unstable patient in the ICU: hemodynamic vs. transesophageal echocardiographic monitoring. Crit Care Med 30:1214–1223CrossRefGoogle Scholar
  25. 25.
    Boulain T, Achard JM, Teboul JL, Richard C, Perrotin D, Ginies G (2002) Changes in BP induced by passive leg raising predict response to fluid loading in critically ill patients. Chest 121:1245–1252PubMedCrossRefGoogle Scholar
  26. 26.
    Axler O, Megarbane B, Lentschener C, Fernandez H (2003) Comparison of cardiac output measured with echocardiographic volumes and aortic Doppler methods during mechanical ventilation. Intensive Care Med 29:208–217PubMedGoogle Scholar
  27. 27.
    Vieillard-Baron A, Chergui K, Rabiller A, Peyrouset O, Page B, Beauchet A, Jardin F (2004) Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Med 30:1734–1739PubMedGoogle Scholar
  28. 28.
    Slama M, Masson H, Teboul JL et al (2004) Monitoring of respiratory variations of aortic blood flow velocity using esophageal Doppler. Intensive Care Med 30:1182–1187PubMedCrossRefGoogle Scholar
  29. 29.
    Monnet X, Rienzo M, Osman D, Anguel N, Richard C, Pinsky MR, Teboul JL (2005) Esophageal Doppler monitoring predicts fluid responsiveness in critically ill ventilated patients. Intensive Care Med 31:1195–1201PubMedCrossRefGoogle Scholar
  30. 30.
    Poelaert JI, Schupfer G (2005) Hemodynamic monitoring utilizing transesophageal echocardiography: the relationships among pressure, flow, and function. Chest 127: 379–390PubMedCrossRefGoogle Scholar
  31. 31.
    Via G, Braschi A (2006) Echocardiographic assessment of cardiovascular failure. Minerva Anesthesiol 72:495–501Google Scholar
  32. 32.
    Price S, Nicol E, Gibson DG, Evans TW (2006) Echocardiography in the critically ill: current and potential roles. Intensive Care Med 32:48–59PubMedCrossRefGoogle Scholar
  33. 33.
    Stoddard MF, Liddell NE, Vogel RL, Longaker RA, Dawkins PR (1992) Comparison of cardiac dimensions by transesophageal and transthoracic echocardiography. Am Heart J 124(3): 675–678PubMedCrossRefGoogle Scholar
  34. 34.
    Perel A (1998) Assessing fluid responsiveness by the systolic pressure variation in mechanically ventilated patients. Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology 89:1309–1310PubMedCrossRefGoogle Scholar
  35. 35.
    Shoemaker WC (1996) Oxygen transport and oxygen metabolism in shock and critical illness. Invasive and noninvasive monitoring of circulatory dysfunction and shock. Crit Care Clin 12:939–969PubMedCrossRefGoogle Scholar
  36. 36.
    Taylor DE, Simonson SG (1996) Use of near-infrared spectroscopy to monitor tissue oxygenation. New Horiz 4:420–425PubMedGoogle Scholar
  37. 37.
    Tavernier B, Makhotine O, Lebuffe G, Dupont J, Scherpereel P (1998) Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology 89:1313–1321PubMedCrossRefGoogle Scholar
  38. 38.
    Michard F, Boussat S, Chemla D, Anguel N, Mercat A, Lecarpentier Y, Richard C, Pinsky MF, Teboul JL (2000) Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 162: 134–138PubMedCrossRefGoogle Scholar
  39. 39.
    Michard F, Teboul JL (2002) Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest 121:2000–2008PubMedCrossRefGoogle Scholar
  40. 40.
    Reuter DA, Felbinger TW, Schmidt C, Kilger E, Goedje O, Lamm P, Goetz AE (2002) Stroke volume variation for assessment of cardiac responsiveness to volume loading in mechanically ventilated patients after cardiac surgery. Intensive Care Med 28:392–398PubMedCrossRefGoogle Scholar
  41. 41.
    Pinsky MR (2004) Using ventilation-induced aortic pressure and flow variation to diagnose preload responsiveness. Intensive Care Med 30:1008–1010PubMedCrossRefGoogle Scholar
  42. 42.
    Perel A, Minkovich L, Preisman S, Abiad M, Segal E, Coriat P (2005) Assessing fluid responsiveness by a standardized ventilatory maneuver: the respiratory systolic variation test. Anesth Analg 100:942–945PubMedCrossRefGoogle Scholar
  43. 43.
    Combes A, Arnoult F, Trouillet JL (2004) Tissue Doppler imaging estimation of pulmonary artery occlusion pressure in ICU patients Intensive Care Med 30:75–81Google Scholar
  44. 44.
    Pavlinic I, Tvrtkovic N, Holcer D (2008) Morphological identification of the soprano pipistrelle in Croatia. Hystrix It J Mamm 19:47–53Google Scholar
  45. 45.
    Magder S (2005) How to use central venous pressure measurements. Curr Opin Crit Care 11:264–270PubMedCrossRefGoogle Scholar
  46. 46.
    Schumaker PT, Cain SM (1987) The concept of a critical oxygen delivery. Intensive Care Med 13:223–229CrossRefGoogle Scholar
  47. 47.
    Hayes MA, Timmins AC, Yau EH et al (1994) Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med 330(24):1717–1722PubMedCrossRefGoogle Scholar
  48. 48.
    Magder S (1998) More respect for the CVP. Intensive Care Med 24:651–653PubMedCrossRefGoogle Scholar
  49. 49.
    Walley KR (2005) Shock. In: Hall JB, Schmidt GA, Wood DH (eds) Principles of critical care, 3rd edn. McGraw-Hill, New York, pp 249–265Google Scholar
  50. 50.
    Teboul JL (1991) Pression capillaire pulmonaire. In: Dhainaut JF, Payen D (eds) Hémodynamique, concepts et pratique en réanimation. Masson, Paris, pp 107–121Google Scholar
  51. 51.
    Jardin F (1997) PEEP, tricuspid regurgitation and cardiac output. Intensive Care Med 23:806–807PubMedCrossRefGoogle Scholar
  52. 52.
    Antonelli M, Levy M, Andrews P, Chastre J, Hudson LD, Manthous C, Meduri GU, Moreno RP, Putensen C, Stewart T, Torres A (2007) Hemodynamic monitoring in shock and implications for management. International Consensus Conference, Paris, 27-28 April 2006. Intensive Care Med 33:575–590PubMedCrossRefGoogle Scholar
  53. 53.
    De Backer D, Creteur J, Preiser JC et al (2002) Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 166:98–104PubMedCrossRefGoogle Scholar
  54. 54.
    Sakr Y, Dubois MJ, De Backer D et al (2004) Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med 32:1825–1831PubMedCrossRefGoogle Scholar
  55. 55.
    Fietsam RJ, Villalba M, Glover JL, Clark K (1989) Intra-abdominal compartment syndrome as a complication of ruptured abdominal aortic aneurysm repair. Am Surg 55:396–402PubMedGoogle Scholar
  56. 56.
    Malbrain ML, CheathamAKirkpatrick KA et al (2006) Results from the international conference of experts on intra-abdominal hypertension and abdominal compartment syndrome. Intensive Care Med 32:1722–1732PubMedCrossRefGoogle Scholar
  57. 57.
    Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377PubMedCrossRefGoogle Scholar
  58. 58.
    Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM et al (2008) Surviving Sepsis Campaign. International guidelines for management of severe sepsis and septic shock. Intensive Care Med 341:17–60CrossRefGoogle Scholar
  59. 59.
    Abid O, Akca S, Haji-Michael P, Vincent JL (2000) Strong vasopressor support may be futile in the intensive care unit patient with multiple organ failure. Crit Care Med 28:947–949PubMedCrossRefGoogle Scholar
  60. 60.
    Hollenberg SM, Ahrens TS, Annane D, Astiz ME, Chalfin DB, Dasta JF, Heard SO, Martin C, Napolitano LM, Susla GM, Totaro R, Vincent JL, Zanotti-Cavazzoni S (2004) Practice parameters for hemodynamic support of sepsis in adult patients: 2004 update. Crit Care Med 32: 1928–1948PubMedCrossRefGoogle Scholar
  61. 61.
    Vieillard-Baron A, Slama M, Cholley B, Janvier G, Vignon P (2008) Echocardiography in the intensive care unit: from evolution to revolution? Intensive Care Med 34:243–249PubMedCrossRefGoogle Scholar
  62. 62.
    Pinsky MR (2003) Hemodynamic monitoring in the intensive care unit. Clin Chest Med 24:549–560PubMedCrossRefGoogle Scholar
  63. 63.
    Braunwald E (1984) Heart disease. W.B. Saunders, Philadelphia, p 173Google Scholar
  64. 64.
    Vincent JL, Weil MH (2006) Fluid challenge revisited. Crit Care Med 34:1333–1337PubMedCrossRefGoogle Scholar
  65. 65.
    Michard F, Teboul JL (2000) Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation. Crit Care 4:282–289PubMedCrossRefGoogle Scholar
  66. 66.
    Rex S, Brose S, Metzelder S, Huneke R, Schalte G, Autschbach R, Rossaint R, Buhre W (2004) Prediction of fluid responsiveness in patients during cardiac surgery. Br J Anaesth 93:782–788PubMedCrossRefGoogle Scholar
  67. 67.
    Pinsky MR, Payen D (2005) Functional hemodynamic monitoring. Crit Care 9:566–572PubMedCrossRefGoogle Scholar
  68. 68.
    Vieillard-Baron A, Slama M (2008) Prise en charge hémodynamique du sepsis sévère et du choc septique à l’aide de l’échocardiographie. In: Vignon P, Cholley B, Slama M, Vieillard-Baron A (eds) Echocardiographie Doppler chez le patient en état critique. Elsevier, Paris, pp 97–114Google Scholar
  69. 69.
    Lichtenstein D, Mezière G, Biderman P, Gepner A, Barré O (1997) The comet-tail artifact: an ultrasound sign of alveolar-interstitial syndrome. Am J Respir Crit Care Med 156:1640–1646PubMedCrossRefGoogle Scholar
  70. 70.
    Lichtenstein D, Mezière G (1998) A lung ultrasound sign allowing bedside distinction between pulmonary edema and COPD: the comet-tail artifact. Intensive Care Med 24:1331–1334PubMedCrossRefGoogle Scholar
  71. 71.
    Cholley BP, Payen D (2003) Pulmonary artery catheters in high-risk surgical patients. N Engl J Med 348:2035–2037PubMedGoogle Scholar
  72. 72.
    Braunwald E, Rahimtoola SH, Loeb HS (1961) Left atrial and left ventricular pressure in subjects without cardiovascular disease. Circulation 24:267–274PubMedCrossRefGoogle Scholar
  73. 73.
    Flores ED, Lange RA, Hillis LD (1990) Relation of mean pulmonary arterial wedge pressure and left ventricular end-diastolic pressure. Am J Cardiol 66:1532–1533PubMedCrossRefGoogle Scholar
  74. 74.
    Pinsky MR (2003) Clinical significance of pulmonary artery occlusion pressure. Intensive Care Med 29:175–178PubMedGoogle Scholar
  75. 75.
    Boldt J, Lenz M, Kumle B, Papsdorf M (1998) Volume replacement strategies on intensive care units: results from a postal survey. Intensive Care Med 24:147–151PubMedCrossRefGoogle Scholar
  76. 76.
    Lichtenstein D, Mezière G (2008) Relevance of lung ultrasound in the diagnosis of acute respiratory failure – The BLUE-protocol. Chest 134:117–125PubMedCrossRefGoogle Scholar
  77. 77.
    Lichtenstein D, Mezière G, Lagoueyte JF, Biderman P, Goldstein I, Gepner A (2009) A-lines and B-lines: lung ultrasound as a bedside tool for predicting pulmonary artery occlusion pressure in the critically ill. Chest 136: 1014–1020PubMedCrossRefGoogle Scholar
  78. 78.
    Lemaire F, Brochard L (2001) ARDS. In: Réanimation Médicale. Masson, Paris, pp 807–810Google Scholar
  79. 79.
    Walley KR, Wood LDH (1998) Ventricular dysfunction in critical illness. In: Hall JB, Schmidt GA, Wood LDH (eds) Principles of critical care, 2nd edn. McGraw-Hill, New York, pp 303–312Google Scholar
  80. 80.
    Staub NC (1974) Pulmonary edema. Physiol Rev 54:678–811PubMedCrossRefGoogle Scholar
  81. 81.
    Chait A, Cohen HE, Meltzer LE, VanDurme JP (1972) The bedside chest radiograph in the evaluation of incipient heart failure. Radiology 105:563–566PubMedGoogle Scholar
  82. 82.
    Rémy-Jardin M, Rémy J (1995) Œdème interstitiel. In: Imagerie nouvelle de la pathologie thoracique quotidienne. Springer, Paris, pp 137–143Google Scholar
  83. 83.
    Guyton CA, Hall JE (1996) Textbook of medical physiology, 9th edn. W.B. Saunders, Philadelphia, pp 496–497Google Scholar
  84. 84.
    Safran D, Journois D (1995) Circulation pulmonaire. In: Samii K (ed) Anesthésie Réanimation Chirurgicale, 2nd edn. Flammarion, Paris, pp 31–38Google Scholar
  85. 85.
    Lichtenstein D (2002) In : General ultrasound in the critically ill, 2nd edn. Springer, Paris Berlin New York, pp 123–136Google Scholar
  86. 86.
    Teboul JL et le groupe d’experts de la SRLF (2004) Recommandations d’experts de la SRLF. Indicateurs du remplissage vasculaire au cours de l’insuffisance circulatoire Réanimation 13:255–263Google Scholar
  87. 87.
    Thys DM (1984) Pulmonary artery catheterization: past, present and future. Mt Sinaï J Med 51:578–584PubMedGoogle Scholar
  88. 88.
    Raper P, Sibbald WJ (1986) Misled by the wedge? The Swan-Ganz catheter and left ventricular preload. Chest 89:427–434PubMedCrossRefGoogle Scholar
  89. 89.
    Tousignant CP, Walsh F, Mazer CD (2000) The use of transesophageal echocardiography for preload assessment in critically ill patients. Anesth Analg 90:351–355PubMedGoogle Scholar
  90. 90.
    Pinsky MR (2003) Pulmonary artery occlusion pressure. Intensive Care Med 29:19–22PubMedCrossRefGoogle Scholar
  91. 91.
    Kumar A, Anel R, Bunnell E, Habet K, Zanotti S, Marshall S, Neumann A, Ali A, Cheang M, Kavinsky C, Parrillo JE (2004) Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit Care Med 32:691–699PubMedCrossRefGoogle Scholar
  92. 92.
    Lichtenstein D, Jardin F (1994) Noninvasive assessment of CVP using inferior vena cava ultrasound measurement of the inferior vena cava in the critically ill. Réanimation Urgences 3:79–82CrossRefGoogle Scholar
  93. 93.
    Mintz GS, Kotler MN, Parry WR, Iskandrian AS, Kane SA (1981) Real-time inferior vena caval ultrasonography: normal and abnormal findings and its use in assessing right-heart function. Circulation 64:1018–1025PubMedCrossRefGoogle Scholar
  94. 94.
    Moreno F, Hagan G, Holmen J, Pryop A, Strickland R, Castle H (1984) Evaluation of size and dynamics of inferior vena cava as an index of right-sided cardiac function. Am J Cardiol 53:579–585PubMedCrossRefGoogle Scholar
  95. 95.
    Nakao S, Come P, Mckay R, Ransil B (1987) Effects of positional changes on inferior vena caval size and dynamics and correlations with right-sided cardiac pressure. Am J Cardiol 59:125–132PubMedCrossRefGoogle Scholar
  96. 96.
    Jue J, Chung W, Schiller N (1992) Does inferior vena cava size predict right atrial pressures in patients receiving mechanical ventilation? J Am Soc Echocardiogr 5:613–619PubMedGoogle Scholar
  97. 97.
    Lichtenstein D, Jardin F (1996) Calibre de la veine cave inférieure et pression veineuse centrale (Lettre à la Rédaction). Réanimation Urgences 5(4):431–434CrossRefGoogle Scholar
  98. 98.
    Barbier C, Loubières Y, Schmitt JM, Hayon J, Ricôme JL, Jardin F, Vieillard-Baron A (2004) Respiratory changes in IVC diameter are helpful in predicting fluid responsiveness in ventilated, septic patients. Intensive Care Med 30:1740–1746PubMedGoogle Scholar
  99. 99.
    Feissel M, Michard F, Faller JP, Teboul JL (2004) The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med 32:1832–1838Google Scholar
  100. 100.
    Ferguson ND, Meade MO, Hallett DC, Stewart TE (2002) High values of the pulmonary artery wedge pressure in patients with acute lung injury and acute respiratory distress syndrome. Intensive Care Med 28:1073–1077PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Service de Réanimation MédicaleBoulogne (Paris-Ouest)France

Personalised recommendations