Information-Based Argumentation

  • Carles Sierra
  • John Debenham
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5605)

Abstract

Information-based argumentation aims to model the partner’s reasoning apparatus to the extent that an agent can work with it to achieve outcomes that are mutually satisfactory and lay the foundation for continued interaction and perhaps lasting business relationships. Information-based agents take observations at face value, qualify them with a belief probability and build models solely on the basis of messages received. Using augmentative dialogue that describes what is good or bad about proposals, these agents observe such statements and aim to model the way their partners react, and then to generate dialogue that works in harmony with their partner’s reasoning.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sierra, C., Debenham, J.: Information-based agency. In: Proceedings of Twentieth International Joint Conference on Artificial Intelligence, IJCAI 2007, Hyderabad, India, pp. 1513–1518 (2007)Google Scholar
  2. 2.
    Sierra, C., Debenham, J.: Trust and honour in information-based agency. In: Stone, P., Weiss, G. (eds.) Proceedings Fifth International Conference on Autonomous Agents and Multi Agent Systems AAMAS 2006, Hakodate, Japan, pp. 1225–1232. ACM Press, New York (2006)CrossRefGoogle Scholar
  3. 3.
    Sierra, C., Debenham, J.: The LOGIC Negotiation Model. In: Proceedings Sixth International Conference on Autonomous Agents and Multi Agent Systems AAMAS 2007, Honolulu, Hawai’i, pp. 1026–1033 (2007)Google Scholar
  4. 4.
    Dung, P.M.: On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games. Artificial Intelligence 77, 321–358 (1995)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Rahwan, I., Ramchurn, S., Jennings, N., McBurney, P., Parsons, S., Sonenberg, E.: Argumentation-based negotiation. Knowledge Engineering Review 18, 343–375 (2003)CrossRefGoogle Scholar
  6. 6.
    Cheeseman, P., Stutz, J.: On The Relationship between Bayesian and Maximum Entropy Inference. In: Bayesian Inference and Maximum Entropy Methods in Science and Engineering, pp. 445–461. American Institute of Physics, Melville (2004)Google Scholar
  7. 7.
    Paris, J.: Common sense and maximum entropy. Synthese 117, 75–93 (1999)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Jaynes, E.: Information theory and statistical mechanics: Part I. Physical Review 106, 620–630 (1957)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Li, Y., Bandar, Z.A., McLean, D.: An approach for measuring semantic similarity between words using multiple information sources. IEEE Transactions on Knowledge and Data Engineering 15, 871–882 (2003)CrossRefGoogle Scholar
  10. 10.
    Lewicki, R.J., Saunders, D.M., Minton, J.W.: Essentials of Negotiation. McGraw Hill, New York (2001)Google Scholar
  11. 11.
    Bentahar, J., Mbarki, M., Meyer, J.J.C., Moulin, B.: Strategic agent communication: An argumentation-driven approach. In: Baldoni, M., Son, T.C., van Riemsdijk, M.B., Winikoff, M. (eds.) DALT 2008. LNCS (LNAI), vol. 5397, pp. 233–250. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Kakas, A., Maudet, N., Moraitis, P.: Layered strategies and protocols layered strategies and protocols for argumentation-based agent interaction. In: Rahwan, I., Moraïtis, P., Reed, C. (eds.) ArgMAS 2004. LNCS (LNAI), vol. 3366, pp. 64–77. Springer, Heidelberg (2005)Google Scholar
  13. 13.
    Mbarki, M., Bentahar, J., Moulin, B.: Specification and complexity of strategic-based reasoning using argumentation. In: Maudet, N., Parsons, S., Rahwan, I. (eds.) ArgMAS 2006. LNCS (LNAI), vol. 4766, pp. 142–160. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Maslow, A.H.: A theory of human motivation. Psychological Review 50, 370–396 (1943)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Carles Sierra
    • 1
  • John Debenham
    • 2
  1. 1.Institut d’Investigació en Intel·ligència Artificial – IIIASpanish Scientific Research Council, CSICBellaterraSpain
  2. 2.University of TechnologySydneyAustralia

Personalised recommendations