MultiQuenching Annealing Algorithm for Protein Folding Problem

  • Juan Frausto-Solis
  • Xavier Soberon-Mainero
  • Ernesto Liñán-García
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5845)

Abstract

This paper presents a new approach named MultiQuenching Annealing (MQA) for the Protein Folding Problem (PFP). MQA has two phases: Quenching Phase (QP) and Annealing Phase (AP). QP is applied at extremely high temperatures when the higher energy variations can occur. AP searches for the optimal solution at high and low temperatures when the energy variations are not very high. The temperature during the QP is decreased by an exponential function. Both QP and AP are divided in several sub-phases to decrease the temperature parameter until a dynamic equilibrium is detected by measuring its quality solution. In addition, an efficient analytical method to tune the algorithm parameters is used. Experimentation presented in the paper shows that MQA can obtain high quality of solution for PFP.

Keywords

Peptide Protein Folding Simulated Annealing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anfinsen, C.: Principles that govern the folding of protein chains. Science 181, 223–230 (1973)CrossRefGoogle Scholar
  2. 2.
    Levinthal, C.: Are there pathways for protein folding? J. Chem. Phys. 65, 44–45 (1968)Google Scholar
  3. 3.
    Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science 4598, 220, 4598, 671–680 (1983)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Cerny, V.: Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. Journal of Optimization Theory and Applications 45(1), 41–51 (1985)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Morales, L., Garduño, R., Romero, D.: Application for simulated annealing to the multiple – minima problem in small peptides. J. Biomol. Str. And Dyn. 8, 1721–1735 (1991)Google Scholar
  6. 6.
    Morales, L., Garduño, R., Romero, D.: The multiple – minima problem in small peptide revisited. The threshold accepting approach. J. Biomol. Str. And Dyn. 9 (1992)Google Scholar
  7. 7.
    Garduño, R., Romero, D.: Heuristic Methods in conformational space search of peptides. J. Mol. Str. 308, 115–123 (1994)Google Scholar
  8. 8.
    Chen, W., Li, K., Liu, J.: The simulated annealing method applied to protein structure prediction. In: Third international conference on machine learning and cybernetics, Shanghai (2004)Google Scholar
  9. 9.
    Frausto-Solis, J., Román, E.F., Romero, D., Soberon, X., Liñan-García, E.: Analytically Tuned Simulated Annealing applied to the Protein Folding Problem. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007. LNCS, vol. 4488, pp. 370–377. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Sanvicente, H., Frausto-Solís, J.: A Method to Establish the Cooling Scheme in Simulated Annealing Like Algorithms. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3045, pp. 755–763. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Eisenmenger, F., Hansmann, U., Hayryan, S., Hu, C.: An Enhanced Version of SMMP – Open source software package for simulation of proteins. Comp. Phys. Comm., 174–422 (2006)Google Scholar
  12. 12.
    Sanvicente-Sanchez, H.: Metodología de paralelización del ciclo de temperatura en algoritmos tipo recocido simulado. Tesis doctoral, ITESM Campus Cuernavaca, México (2003)Google Scholar
  13. 13.
    Sanvicente-Sanchez, H., Frausto-Solis, J.: Optimización de los diámetros de las tuberías de una red de distribución de agua mediante algoritmos de recocido simulado. Ingeniería hidráulica en México XVIII(1), 105–118 (2003)Google Scholar
  14. 14.
    Sanvicente-Sanchez, H., Frausto-Solis, J., Imperial, F.: Solving SAT Problems with TA Algorithms Using Constant and Dynamic Markov Chains Length. In: Megiddo, N., Xu, Y., Zhu, B. (eds.) AAIM 2005. LNCS, vol. 3521, pp. 281–290. Springer, Heidelberg (2005)Google Scholar
  15. 15.
    Frausto-Solis, J., Sanvicente-Sanchez, H., Imperial, F.: ANDYMARK: An analytical method to establish dynamically the length of the Markov chain in simulated annealing for the satisfability problem. LNCS. Springer, Heidelberg (2006)Google Scholar
  16. 16.
    Eisenmenger, F., Hansmann, U., Hayryan, S., Hu, C.: SMMP: A modern Package for Protein Simulation. Comp. Phys. Comm. 138, 192 (2001)MATHCrossRefGoogle Scholar
  17. 17.
    Protein Data Bank web page, http://www.rcsb.org

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Juan Frausto-Solis
    • 1
  • Xavier Soberon-Mainero
    • 2
  • Ernesto Liñán-García
    • 3
  1. 1.Tecnológico de MonterreyXochitepecMéxico
  2. 2.IBT UNAM 
  3. 3.Universidad Autónoma de Coahuila 

Personalised recommendations