Planning for Conditional Learning Routes

  • Lluvia Morales
  • Luis Castillo
  • Juan Fernández-Olivares
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5845)

Abstract

This paper builds on a previous work in which an HTN planner is used to obtain learning routes expressed in the standard language IMS-LD and its main contribution is the extension of a knowledge engineering process that allows us to obtain conditional learning routes able to adapt to run time events, such as intermediate course evaluations, what is known as the standard IMS-LD level B.

Keywords

Planning and Scheduling Automatic Generation of IMS-LD level B 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brusilovsky, P., Vassileva, J.: Course Sequencing Techinques for Large-Scale Web-Based Education. International Journal Continuing Engeenering Education and Lifelong Learning 13(1/2), 75–94 (2003)Google Scholar
  2. 2.
    OUNL: Ims Global Learning Consortium. Open University of the Netherlands (2003), http://www.imsglobal.org/
  3. 3.
    Heyer, S., Oberhuemer, P., Zander, S., Prenner, P.: Making Sense of IMS Learning Design Level B: From Specification to Intuitive Modeling Software. In: Duval, E., Klamma, R., Wolpers, M. (eds.) EC-TEL 2007. LNCS, vol. 4753, pp. 86–100. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Castillo, L., Morales, L., Fernández-Olivares, J., González-Ferrer, A., Palao, F.: Knowledge Engineering and Planning for the Automated Synthesis of Customized Learning Designs. In: Borrajo, D., Castillo, L., Corchado, J.M. (eds.) CAEPIA 2007. LNCS (LNAI), vol. 4788, pp. 40–49. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Castillo, L., Fernández-Olivares, J., García-Pérez, O., Palao, F.: Efficiently Handling Temporal Knowledge in an HTN Planner. In; ICAPS 2006, pp. 63–72 (2006)Google Scholar
  6. 6.
    Liber, O.: REusable eLearning Object Authoring and Delivery. University of Bolton (2007), http://www.reload.ac.uk/
  7. 7.
    Kontopoulos, E., Vrakas, D., Kokkoras, F., Bassiliades, N., Vlahavas, I.: An Ontology-based Planning System for e-course Generation. Expert Systems with Applications 35(1/2), 398–406 (2008)CrossRefGoogle Scholar
  8. 8.
    Ullrich, C., Melis, E.: Pedagogically Founded Courseware Generation Based on HTN-planning. Expert Systems with Applications 36(5), 9319–9332 (2009)CrossRefGoogle Scholar
  9. 9.
    Nau, D., Au, T.-C., Ilghami, O., Kuter, U., Murdock, J.W., Wu, D., Yaman, F.: Shop2: An HTN Planning System. Journal of Artificial Intelligence Research 20(1), 379–404 (2003)MATHGoogle Scholar
  10. 10.
    Sicilia, M., Sánchez-Alonso, S., García-Barriocanal, E.: On Supporting the Process of Learning Design through Planners. CEUR Workshop Proceedings: Virtual Campus 2006 Post-Proceedings 186(1), 81–89 (2006)Google Scholar
  11. 11.
    Onder, N., Pollack, M.E.: Conditional, probabilistic planning: A unifying algorithm and effective search control mechanisms. In: Proceedings of the Sixteenth National Conference on Artificial Intelligence, pp. 577–584 (1999)Google Scholar
  12. 12.
    Myers, K.L.: Towards a framework for Continuous Planning and Execution. In: AAAI Fall Symposium on Distributed Continual Planning (1998)Google Scholar
  13. 13.
    Foulser, D., Li, M., Yang, Q.: Theory and Algorithms for Plan Merging. Artificial Intelligence 57, 143–181 (1992)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Lluvia Morales
    • 1
  • Luis Castillo
    • 1
  • Juan Fernández-Olivares
    • 1
  1. 1.Department of Computer Science and Artificial IntelligenceUniversity of GranadaGranadaSpain

Personalised recommendations