Mining Social Networks on the Mexican Computer Science Community

  • Huberto Ayanegui-Santiago
  • Orion F. Reyes-Galaviz
  • Alberto Chávez-Aragón
  • Federico Ramírez-Cruz
  • Alberto Portilla
  • Luciano García-Bañuelos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5845)


Scientific communities around the world are increasingly paying more attention to collaborative networks to ensure they remain competitive, the Computer Science (CS) community is not an exception. Discovering collaboration opportunities is a challenging problem in social networks. Traditional social network analysis allows us to observe which authors are already collaborating, how often they are related to each other, and how many intermediaries exist between two authors. In order to discover the potential collaboration among Mexican CS scholars we built a social network, containing data from 1960 to 2008. We propose to use a clustering algorithm and social network analysis to identify scholars that would be advisable to collaborate. The idea is to identify clusters consisting of authors who are completely disconnected but with opportunities of collaborating given their common research areas. After having clustered the initial social network we built, we analyze the collaboration networks of each cluster to discover new collaboration opportunities based on the conferences where the authors have published. Our analysis was made based on the large-scale DBLP bibliography and the census of Mexican scholars made by REMIDEC.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge (1994)Google Scholar
  2. 2.
    Domingos, P., Richardson, M.: Mining the network value of customers. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 57–66. ACM Press, New York (2001)CrossRefGoogle Scholar
  3. 3.
    Zaiane, O.R., Chen, J., Goebel, R.: DBconnect: mining research community on DBLP data. In: WebKDD/SNA-KDD 2007: Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 workshop on Web mining and social network analysis, New York, USA, pp. 74–81. ACM, New York (2007)CrossRefGoogle Scholar
  4. 4.
    Berry, M.J.A., Linoff, G.S.: Data Mining Techniques. For Marketing, Sales, and Customer Support. Wiley, Chichester (1997)Google Scholar
  5. 5.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society 39(1), 1–38 (1977)MATHMathSciNetGoogle Scholar
  6. 6.
    Ley, M.: Dblp: How the data gets in. Talk at the University of Manchester (2009)Google Scholar
  7. 7.
    REMIDEC. Investigadores y profesores con doctorado en el campo de computación en méxico. Red Mexicana de Investigación y Desarrollo en Computación (2008)Google Scholar
  8. 8.
    Newman, M.E.J.: Who is the best connected scientist? a study of scientific coauthorship networks. Phys. Rev. E64(016132) (2001)Google Scholar
  9. 9.
    Batagelj, V., Mrvar, A.: PAJEK Reference Manal Version 1.24. University of Ljubljana, Slovenia (December 2008)Google Scholar
  10. 10.
    Elmacioglu, E., Lee, D.: On six degrees of separation in dblp-db and more. SIGMOD Record 34(2), 33–40 (2005)CrossRefGoogle Scholar
  11. 11.
    Barabasi, A.L., Jeong, H., Neda, Z., Ravasz, E., Schubert, A., Vicsek, T.: Evolution of the social network of scientific collaborations. Physica A: Statistical Mechanics and its Applications 311(3-4), 590–614 (2002)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Newman, M.E.J.: The structure of scientific collaboration networks. Proc. National Academy of Sciences 98(2), 404–409 (2001)MATHCrossRefGoogle Scholar
  13. 13.
    Wuchty, S., Jones, B.F., Uzzi, B.: The increasing dominance of teams in production of knowledge. Science 316(5827), 1036–1039 (2007)CrossRefGoogle Scholar
  14. 14.
    Schwartz, M.F., Wood, D.C.M.: Discovering Shared Interests Using Graph Analysis. Communications of the ACM 8(36), 78–89 (1993)CrossRefGoogle Scholar
  15. 15.
    Khan, F.M., Fisher, T.A., Shuler, L., Wu, T., Pottenger, W.M.: Mining Chat-room Conversations for Social and Semantic Interactions (2002)Google Scholar
  16. 16.
    Brner, K., Dall’Asta, L., Ke, W., Vespignani, A.: Studying the emerging global brain: Analyzing and visualizing the impact of co-authorship teams. Complexity 10(4), 57–67 (2005)CrossRefGoogle Scholar
  17. 17.
    Mitchell, T.: Machine Learning, Paperback. McGraw-Hill Education, New York (1997)Google Scholar
  18. 18.
    Xie, L., Liu, Z.-Q.: A coupled HMM approach to video-realistic speech animation. Pattern Recogn. 40(8), 2325–2340 (2007)MATHCrossRefGoogle Scholar
  19. 19.
    Bradley, P.S., Fayyad, U., Reina, C.: Scaling EM (Expectation-Maximization) Clustering to Large Databases (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Huberto Ayanegui-Santiago
    • 1
  • Orion F. Reyes-Galaviz
    • 1
  • Alberto Chávez-Aragón
    • 1
  • Federico Ramírez-Cruz
    • 1
    • 2
  • Alberto Portilla
    • 1
    • 3
    • 4
  • Luciano García-Bañuelos
    • 1
  1. 1.Facultad de Ciencias Básicas, Ingeniería y TecnologíaUniversidad Autónoma de TlaxcalaApizacoMéxico
  2. 2.Instituto Tecnológico de Apizaco 
  3. 3.Laboratory of Informatics of Grenoble 
  4. 4.Research Center of Information and Automation Technologies Fundación Universidad de las AméricasCNRS, Grenoble Institute of Technology, University Joseph FourierPuebla

Personalised recommendations