Simulation of Incompressible Problems in Geomechanics

  • Dieter Stolle
  • Issam Jassim
  • Pieter Vermeer
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 1)


This article presents techniques for solving problems involving incompressibility in the context of low-order linear elements. It begins with describing a weak formulation that applies to both finite element and material point methods. Iterative solution schemes, including relaxation and explicit time stepping, are summarized. A strain enhancement procedure that is useful when incompressibility is introduced through plasticity is presented next, followed by a slope stability example that compares the iteration characteristics and vertical crest displacement corresponding to explicit and implicit matrix-free algorithms. Two procedures for dealing with pore pressure generation related to incompressibility and undrained conditions are described and an example is presented to compare pore pressures.


Pore Pressure Material Point Volumetric Strain Dynamic Relaxation Material Point Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beuth, L., Vermeer, P., Nemeth, A.: Extended quasi-static material point method. Report: 35, IGS Stuttgart University (2008)Google Scholar
  2. 2.
    Bonet, J., Burton, A.J.: A simple averaged nodal pressure tetrahedral element for nearly incompressible dynamic explicit applications. Communi. Numer. Methods Eng. 14, 437–449 (1998)CrossRefGoogle Scholar
  3. 3.
    Chen, Z., Brannon, R.: An evaluation of the material point method. Report: SAND 2002-0482, Sandia National Laboratories, Albuquerque, NM 87185-0893 (2002)Google Scholar
  4. 4.
    Chung, W.J., Cho, J.W., Belytschko, T.: On the dynamic effects of explicit FEM in sheet metal forming analysis. Eng. Comput. 15, 750–776 (1998)CrossRefGoogle Scholar
  5. 5.
    Coetzee, C.J.: The material point method: theory and background. PhD Dissertation, University of Stellenbosch, South Africa (2005)Google Scholar
  6. 6.
    Detournay, C., Dzik, E.: Nodal mixed discretization for tetrahedral elements. In: Hart, R., Varona, P. (eds.) 4th international FLAC symposium, numerical modeling in geomechanics. Minnesota Itasca Consulting Group, Inc. Paper No. 07-02 (2006)Google Scholar
  7. 7.
    Guilkey, J., Weiss, J.: Implicit time integration for the material point method: quantitative and algorithmic comparisons with the finite element method. Int. J. Num. Methods Eng. 57, 1323–1338 (2003)Google Scholar
  8. 8.
    Huang, M., Yue, Z.Q., Tham, L.G., Zienkiewicz, O.C.: On the stable finite element procedures for dynamic problems of saturated porous media. Int. J. Num. Methods Eng. 61, 1421–1450 (2004)Google Scholar
  9. 9.
    Nithiarasu, P.: A matrix free fractional step method for static and dynamic incompressible solid mechanics. Int. J. Comput. Meth. Eng. Sci. Mech. 7, 369–380 (2006)Google Scholar
  10. 10.
    Sauve, R.G., Metzger, D.R.: Advances in dynamic relaxation techniques for nonlinear finite element analysis. J. Press Vess. Tech. 117, 170–176 (1995)Google Scholar
  11. 11.
    Stolle, D.F.E., Smith, W.S.: Average strain strategy for finite elements. Finite Elements Anal. Des. 40, 2011–2024 (2004)Google Scholar
  12. 12.
    Sulsky, D., Kaul, A.: Implicit dynamics in the material-point method. Comput. Methods Appl. Mech. Eng. 193, 1137–1170 (2004)Google Scholar
  13. 13.
    Taylor, R.L.: A mixed-enhanced formulation for tetrahedral finite elements. Int. J. Num. Methods Eng. 47, 205–227 (2000)Google Scholar
  14. 14.
    Wan, J.: Stabilized finite element methods for coupled geomechanics and multiphase flow. PhD thesis, Stanford University, CA, USA (2002)Google Scholar
  15. 15.
    Wieckowski, Z., Youn, S.-K., Yeon, J.-H.: A Particle-in-cell solution to the silo discharge problem. Int. J. Num. Methods Eng. 45, 1203–1225 (1999)Google Scholar
  16. 16.
    Zienkiewicz, O.C., Taylor, R.L.: The finite element method, 5th edn. Butterworth-Heinemann, Oxford (2000)Google Scholar
  17. 17.
    Zienkiewicz, O.C., Wu, J.: Incompressibility without tears - how to avoid restrictions of mixed formulation. Int. J. Num. Methods Eng. 32, 1189–1203 (1991)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2010

Authors and Affiliations

  • Dieter Stolle
    • 1
  • Issam Jassim
    • 2
  • Pieter Vermeer
    • 2
  1. 1.Department of Civil EngineeringMcMaster UniversityHamiltonCanada
  2. 2.Institute of Geotechnical EngineeringStuttgart UniversityStuttgartGermany

Personalised recommendations