Instrumentation and Sensors for Human Breath Analysis

  • Melinda G. Simon
  • Cristina E. Davis
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 55)


Exhaled breath contains a vast milieu of compounds, both volatile and non-volatile, that appear to correlate with physiological processes on-going in the body. These breath biomarkers hold enormous diagnostic potential when they are adequately measured and monitored. Thus, instrumentation geared towards breath analysis applications has expanded rapidly in the last decade, although challenges for future research still exist. This chapter briefly reviews the history of analytical instrumentation and breath biosensors that have been reported in the literature, and corresponding data analysis approaches that have been attempted to date.


breath analysis biomarker identification disease diagnostics chemometrics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Van den Velde, S., Nevens, F., Van Hee, P., Van Steenberghe, D., Quirynen, M.: GC-MS analysis of breath odor compounds in liver patients. Journal of Chromatography B 875, 344–348 (2008)CrossRefGoogle Scholar
  2. 2.
    Pauling, L., Robinson, A.B., Teranishi, R., Cary, P.: Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography. Proc. Natl. Acad. Sci. USA 68, 2374–2376 (1971)CrossRefGoogle Scholar
  3. 3.
    Phillips, M., Herrera, J., Krishnan, S., Zain, M., Greenberg, J., Cataneo, R.N.: Variation in volatile organic compound in the breath of normal humans. J. Chromatography B 729, 75–88 (1999)CrossRefGoogle Scholar
  4. 4.
    Gessner, C., Kuhn, H., Toepfer, K., Hammerschmidt, S., Schauer, J., Wirtz, H.: Detection of p53 gene mutations in exhaled breath condensate of non-small cell lung cancer patients. Lung Cancer 43, 215–222 (2004)CrossRefGoogle Scholar
  5. 5.
    Cap, P., Chladek, J., Pehal, F., Maly, M., Petru, V., Barnes, P.J., Montuschi, P.: Gas chromatography/mass spectrometry analysis of exhaled leukotrienes in asthmatic patients. Thorax 59, 465–470 (2004)CrossRefGoogle Scholar
  6. 6.
    Borrill, Z.L., Roy, K., Singh, D.: Exhaled breath condensate biomarkers in COPD. European Respiratory Journal 32, 472–486 (2008)CrossRefGoogle Scholar
  7. 7.
    Shimizu, Y., Dobashi, K., Mori, M.: Exhaled breath marker in asthma patients with Gastroesophageal reflux disease. Journal of Clinical Biochemistry and Nutrition 41, 147–153 (2007)CrossRefGoogle Scholar
  8. 8.
    Balint, B., Kharitonov, S.A., Hanazawa, T., Donnelly, L.E., Shah, P.L., Hodson, M.E., Barnes, P.J.: Increased nitrotyrosine in exhaled breath condensate in cystic fibrosis. European Respiratory Journal 17, 1201–1207 (2001)CrossRefGoogle Scholar
  9. 9.
    Novak, B.J., Blake, D.R., Melnardi, S., Rowland, F.S., Pontello, A., Cooper, D.M., Galassetti, P.R.: Exhaled methyl nitrate as a noninvasive marker of hyperglycemia in type 1 diabetes. Proc. Natl. Acad. Sci. USA 104, 15613–15618 (2007)CrossRefGoogle Scholar
  10. 10.
    Cope, K.A., Solga, S.F., Hummers, L.K., Wigley, F.M., Diehl, A.M., Risby, T.H.: Abnormal breath ethane concentrations in patients with systemic sclerosis. Arthritis & Rheumatism 52, S591–S592 (2005)Google Scholar
  11. 11.
    Jordaan, M., Laurens, J.B.: Diagnosis of Helicobacter pylori infection with the C-13-urea breath test by means of GC-MS analysis. Journal of Separation Science 31, 329–335 (2008)CrossRefGoogle Scholar
  12. 12.
    Phillips, M., Boehmer, J.P., Cataneo, R.N., Cheema, T., Eisen, H.J., Fallon, J.T., Fisher, P.E., Gass, A., Greenberg, J., Kobashigawa, J., et al.: Heart allograft rejection: Detection with breath alkanes in low levels (the HARDBALL study). Journal of Heart and Lung Transplantation 23, 701–708 (2004)CrossRefGoogle Scholar
  13. 13.
    Zhang, Z., Yang, M.J., Pawliszyn, J.: Solid-Phase Microextraction. A Solvent-Free Alternative to Sample Preparation. Anal. Chem. 66, 844A–853A (1994)Google Scholar
  14. 14.
    Fumagalli, M., Dolcini, L., Sala, A., Stolk, J., Fregonese, L., Ferrari, F., Viglio, S., Luisetti, M., Iadarola, P.: Proteomic analysis of exhaled breath condensate from single patients with pulmonary emphysema associated to alpha(1)-antitrypsin deficiency. Journal of Proteomics 71, 211–221 (2008)CrossRefGoogle Scholar
  15. 15.
    Schettgen, T., Tings, A., Brodowsky, C., Mueller-Lux, A., Musiol, A., Kraus, T.: Simultaneous determination of the advanced glycation end product N-epsilon-carboxymethyllysine and its precursor, lysine, in exhaled breath condensate using isotope-dilution-hydrophilic-interaction liquid chromatography coupled to tandem mass spectrometry. Analytical and Bioanalytical Chemistry 387, 2783–2791 (2007)CrossRefGoogle Scholar
  16. 16.
    Conventz, A., Musiol, A., Brodowsky, C., Mueller-Lux, A., Dewes, P., Kraus, T., Schettgen, T.: Simultaneous determination of 3-nitrotyrosine, tyrosine, hydroxyproline and proline in exhaled breath condensate by hydrophilic interaction liquid chromatography/electrospray ionization tandem mass spectrometry. Journal of Chromatography B 860, 78–85 (2007)CrossRefGoogle Scholar
  17. 17.
    Prado, C., Marin, P., Periago, J.F.: Application of solid-phase microextraction and gas chromatography-mass spectrometry to the determination of volatile organic compounds in end-exhaled breath samples. Journal of Chromatography A 1011, 125–134 (2003)CrossRefGoogle Scholar
  18. 18.
    Gonzalez-Reche, L.M., Kucharczyk, A., Musiol, A.K., Kraus, T.: Determination of N-(epsilon) (carboxymethyl)lysine in exhaled breath condensate using isotope dilution liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Communications in Mass Spectrometry 20, 2747–2752 (2006)CrossRefGoogle Scholar
  19. 19.
    Phillips, M., Cataneo, R.N., Cummin, A.R.C., Gagliardi, A.J., Gleeson, K., Greenberg, J., Maxfield, R.A., Rom, W.N.: Detection of lung cancer with volatile markers in the breath. Chest 123, 2115–2123 (2003)CrossRefGoogle Scholar
  20. 20.
    Larstad, M., Soderling, A.-S., Caidahl, K., Olin, A.-C.: Selective quantification of free 3-nitrotyrosine in exhaled breath condensate in asthma using gas chromatography/tandem mass spectrometry. Nitric Oxide 13, 134–144 (2005)CrossRefGoogle Scholar
  21. 21.
    Barker, M., Hengst, M., Schmid, J., Buers, H.J., Mittermaier, B., Klemp, D., Koppman, R.: Volatile organic compounds in the exhaled breath of young patients with cystic fibrosis. European Respiratory Journal 27, 929–936 (2006)Google Scholar
  22. 22.
    Kanoh, S., Kobayashi, H., Motoyoshi, K.: Exhaled ethane - An in vivo biomarker of lipid peroxidation in interstitial lung diseases. Chest 128, 2387–2392 (2005)CrossRefGoogle Scholar
  23. 23.
    Phillips, M., Cataneo, R.N., Condos, R., Erickson, G.A.R., Greenberg, J., La Bombardi, V., Munawar, M.I., Tietje, O.: Volatile biomarkers of pulmonary tuberculosis in the breath. Tuberculosis (Amsterdam) 87, 44–52 (2007)CrossRefGoogle Scholar
  24. 24.
    Phillips, M., Cataneo, R.N., Greenberg, J., Gunawardena, R., Naidu, A., Rahbari-Oskoui, F.: Effect of age on the breath methylated alkane contour, a display of apparent new markers of oxidative stress. Journal of Laboratory and Clinical Medicine 136, 243–249 (2000)CrossRefGoogle Scholar
  25. 25.
    Amorim, L.C.A., Carneiro, J.P., Cardeal, Z.L.: An optimized method for determination of benzene in exhaled air by gas chromatography-mass spectrometry using solid phase microextraction as a sampling technique. Journal of Chromatography B 865, 141–146 (2008)CrossRefGoogle Scholar
  26. 26.
    Deng, C., Zhang, J., Yu, X., Zhang, W., Zhang, X.: Determination of acetone in human breath by gas chromatography-mass spectrometry and solid-phase microextraction with on-fiber derivatization. Journal of Chromatography B 810, 269–275 (2004)Google Scholar
  27. 27.
    Svensson, S., Larstad, M., Broo, K., Olin, A.-C.: Determination of aldehydes in human breath by on-fibre derivatization, solid-phase microextraction and GC-MS. Journal of Chromatography B 860, 86–91 (2007)CrossRefGoogle Scholar
  28. 28.
    Amorim, L.C.A., Cardeal, Z.d.L.: Breath air analysis and its use as a biomarker in biological monitoring of occupational and environmental exposure to chemical agents. Journal of Chromatography B 853, 1–9 (2007)CrossRefGoogle Scholar
  29. 29.
    Libardoni, M., Stevens, P.T., Hunter Waite, J., Sacks, R.: Analysis of human breath samples with a multi-bed sorption trap and comprehensive two-dimensional gas chromatography (GC x GC). J. Chromatography B 842, 13–21 (2006)CrossRefGoogle Scholar
  30. 30.
    Corradi, M., Rubinstein, I., Andreoli, R., Manini, P., Caglieri, A., Poli, D., Alinovi, R., Mutti, A.: Aldehydes in exhaled breath condensate of patients with chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine 167, 1380–1386 (2003)CrossRefGoogle Scholar
  31. 31.
    Syslova, K., Kacer, P., Kuzma, M., Klusackova, P., Fenclova, Z., Lebedova, J., Pelclova, D.: Determination of 8-iso-prostaglandin F-2 alpha in exhaled breath condensate using combination of immunoseparation and LC-ESI-MS/MS. Journal of Chromatography B 867, 8–14 (2008)CrossRefGoogle Scholar
  32. 32.
    Harris, D.C.: Quantitative Chemical Analysis, 5th edn. W.H. Freeman and Company, New York (1999)Google Scholar
  33. 33.
    Lucidi, V., Ciabattoni, G., Bella, S., Barnes, P.J., Montuschi, P.: Exhaled 8-isoprostane and prostaglandin E-2 in patients with stable and unstable cystic fibrosis. Free Radical Biology & Medicine 45, 913–919 (2008)CrossRefGoogle Scholar
  34. 34.
    Montuschi, P., Ragazzoni, E., Valente, S., Corbo, G., Mondino, C., Ciappi, G., Ciabattoni, G.: Validation of 8-isoprostane and prostaglandin E2 measurements in exhaled breath condensate. Inflammation Research 52, 502–507 (2003)CrossRefGoogle Scholar
  35. 35.
    Larstad, M., Ljungkvist, G., Olin, A.-C., Toren, K.: Determination of malondialdehyde in breath condensate by high-performance liquid chromatography with fluorescence detection. Journal of Chromatography B 766, 107–114 (2002)CrossRefGoogle Scholar
  36. 36.
    Montuschi, P., Kharitonov, S.A., Ciabattoni, G., Barnes, P.J.: Exhaled leukotrienes and prostaglandins in COPD. Thorax 58, 585–588 (2003)CrossRefGoogle Scholar
  37. 37.
    Senthilmohan, S.T., Kettle, A.J., McEwan, M.J., Durnmer, J., Edwards, S.J., Wilson, P.F., Epton, M.J.: Detection of monobromamine, monochloramine and dichloramine using selected ion flow tube mass spectrometry and their relevance as breath markers. Rapid Communications in Mass Spectrometry 22, 677–681 (2008)CrossRefGoogle Scholar
  38. 38.
    Spanel, P., Smith, D.: Selected ion flow tube mass spectrometry for on-line trace gas analysis in biology and medicine. European Journal of Mass Spectrometry 13, 77–82 (2007)CrossRefGoogle Scholar
  39. 39.
    Klebanoff, S.J.: Myeloperoxidase: friend and foe. Journal of Leukocyte Biology 77, 598–625 (2005)CrossRefGoogle Scholar
  40. 40.
    Turner, C., Spanel, P., Smith, D.: A longitudinal study of ammonia, acetone and propanol in the exhaled breath of 30 subjects using selected ion flow tube mass spectrometry, SIFT-MS. Physiological Measurement 27, 321–337 (2006)CrossRefGoogle Scholar
  41. 41.
    Turner, C., Spanel, P., Smith, D.: A longitudinal study of methanol in the exhaled breath of 30 healthy volunteers using selected ion flow tube mass spectrometry, SIFT-MS. Physiological Measurement 27, 637–648 (2006)CrossRefGoogle Scholar
  42. 42.
    Turner, C., Spanel, P., Smith, D.: A longitudinal study of ethanol and acetaldehyde in the exhaled breath of healthy volunteers using selected-ion flow-tube mass spectrometry. Rapid Communications in Mass Spectrometry 20, 61–68 (2006)CrossRefGoogle Scholar
  43. 43.
    O’Hara, M.E., O’Hehir, S., Green, S., Mayhew, C.A.: Development of a protocol to measure volatile organic compounds in human breath: a comparison of rebreathing and on-line single exhalations using proton transfer reaction mass spectrometry. Physiological Measurement 29, 309–330 (2008)CrossRefGoogle Scholar
  44. 44.
    Karl, T., Jordan, A., Hansel, A., Holzinger, R., Lindinger, W.: Benzene and acetonitrile in smokers and nonsmokers. Berichte des Naturwissenschaftlich-Medizinischen Vereins in Innsbruck 85, 7–15 (1998)Google Scholar
  45. 45.
    Moser, B., Bodrogi, F., Eibl, G., Lechner, M., Rieder, J., Lirk, P.: Mass spectrometric profile of exhaled breath - field study by PTR-MS. Respiratory Physiology & Neurobiology 145, 295–300 (2005)CrossRefGoogle Scholar
  46. 46.
    Hansel, A., Jordan, A., Holzinger, R., Prazeller, P., Vogel, W., Lindinger, W.: Proton transfer reaction mass spectrometry: on-line trace gas analysis at the ppb level. International Journal of Mass Spectrometry and Ion Processes 149-150, 609–619 (1995)CrossRefGoogle Scholar
  47. 47.
    Borsdorf, H., Eiceman, G.A.: Ion Mobility Spectrometry: Principles and Applications. Applied Spectroscopy Reviews 41, 323–375 (2006)CrossRefGoogle Scholar
  48. 48.
    Baumbach, J.I.: Process analysis using ion mobility spectrometry. Analytical and Bioanalytical Chemistry 384, 1059–1070 (2006)CrossRefGoogle Scholar
  49. 49.
    Xie, Z., Sielemann, S., Schmidt, H., Li, F., Baumbach, J.I.: Determination of acetone, 2-butanone, diethyl ketone and BTX using HSCC-UV-IMS. Analytical and Bioanalytical Chemistry 372, 606–610 (2002)CrossRefGoogle Scholar
  50. 50.
    Ulanowska, A., Ligor, M., Amann, A., Buszewski, B.: Determination of Volatile Organic Compounds in Exhaled Breath by Ion Mobility Spectrometry. Chemia Analityczna 53, 953–965 (2008)Google Scholar
  51. 51.
    Ruzsanyi, V., Baumbach, J.I., Sielemann, S., Litterst, P., Westhoff, M., Freitag, L.: Detection of human metabolites using multi-capillary columns coupled to ion mobility spectrometers. Journal of Chromatography A 1084, 145–151 (2005)CrossRefGoogle Scholar
  52. 52.
    Westhoff, M., Litterst, P., Freitag, L., Baumbach, J.I.: Ion mobility spectrometry in the diagnosis of sarcoidosis: Results of a feasibility study. Journal of Physiology and Pharmacology 58, 739–751 (2007)Google Scholar
  53. 53.
    Westhoff, M., Litterst, P., Freitag, L., Urfer, W., Bader, S., Baumbach, J.I.: Ion mobility spectrometry for the detection of volatile organic compounds in exhaled breath of lung cancer patients. Thorax (2009)Google Scholar
  54. 54.
    Molina, M.A., Zhao, W., Sankaran, S., Schivo, M., Kenyon, N.J., Davis, C.E.: Design-of-experiment optimization of exhaled breath condensate analysis using a miniature differential mobility spectrometer (DMS). Analytica Chimica Acta 628, 155–161 (2008)CrossRefGoogle Scholar
  55. 55.
    Miller, R.A., Nazarov, E.G., Zhong, M.: NOx monitor using differential mobility spectrometry. Sionex Corporation (2006)Google Scholar
  56. 56.
    Du, F., Huang, W., Shi, Y., Wang, Z., Cheng, J.: Real-time monitoring of NO release from single cells using carbon fiber microdisk electrodes modified with single-walled carbon nanotubes. Biosensors & Bioelectronics 24, 415–421 (2008)CrossRefGoogle Scholar
  57. 57.
    Wang, S., Lin, X.: Electrodeposition of Pt-Fe(III) nanoparticle on glassy carbon electrode for electrochemical nitric oxide sensor. Electrochimica Acta 50, 2887–2891 (2005)CrossRefGoogle Scholar
  58. 58.
    Shin, J.H., Privett, B.J., Kita, J.M., Wightman, R.M., Schoenfisch, M.H.: Fluorinated Xerogel-Derived Microelectrodes for Amperometric Nitric Oxide Sensing. Analytical Chemistry 80, 6850–6859 (2008)CrossRefGoogle Scholar
  59. 59.
    Asakawa, H., Ikeno, S., Haruyama, T.: The molecular design of a PMP complex and its application in a molecular transducer for cellular NO sensing. Sensors and Actuators B 108, 646–650 (2005)CrossRefGoogle Scholar
  60. 60.
    Maniscalco, M., de Laurentiis, G., Weitzberg, E., Lundberg, J.O., Sofia, M.: Validation study of nasal nitric oxide measurements using a hand-held electrochemical analyser. European Journal of Clinical Investigation 38, 197–200 (2008)CrossRefGoogle Scholar
  61. 61.
    Silkoff, P.E., Carlson, M., Bourke, T., Katial, R., Ogren, E., Szefler, S.J.: The Aerocrine exhaled nitric oxide monitoring system NIOX is cleared by the US Food and Drug Administration for monitoring therapy in asthma. Journal of Allergy and Clinical Immunology 114, 1241–1256 (2004)CrossRefGoogle Scholar
  62. 62.
    Thanachasai, S., Rokutanzono, S., Yoshida, S., Watanabe, T.: Novel Hydrogen Peroxide Sensors Based on Peroxidase-Carrying Poly{pyrrole-co-[4-(3-pyrrolyl)butanesulfonate]} Copolymer Films. Analytical Sciences 18, 773–777 (2002)CrossRefGoogle Scholar
  63. 63.
    Zetterquist, W., Marteus, H., Johannesson, M., Nordvall, S.L., Ihre, E., Lundberg, J.O.N., Alving, K.: Exhaled carbon monoxide is not elevated in patients with asthma or cystic fibrosis. European Respiratory Journal 20, 92–99 (2002)CrossRefGoogle Scholar
  64. 64.
    Camacho, C., Chico, B., Cao, R., Matias, J.C., Hernandez, J., Palchetti, I., Simpsond, B.K., Mascinic, M., Villalonga, R.: Novel enzyme biosensor for hydrogen peroxide via supramolecular associations. Biosensors & Bioelectronics 24, 2028–2033 (2009)CrossRefGoogle Scholar
  65. 65.
    Wang, X., Yang, T., Feng, Y., Jiao, K., Li, G.: A Novel Hydrogen Peroxide Biosensor Based on the Synergistic Effect of Gold-Platinum Alloy Nanoparticles/Polyaniline Nanotube/Chitosan Nanocomposite Membrane. Electroanalysis 21, 819–825 (2009)Google Scholar
  66. 66.
    Xi, F., Liu, L., Chen, Z., Lin, X.: One-step construction of reagentless biosensor based on chitosan-carbon nanotubes-nile blue-horseradish peroxidase biocomposite formed by electrodeposition. Talanta 78, 1077–1082 (2009)CrossRefGoogle Scholar
  67. 67.
    Anh, D.T.V., Olthius, W., Bergveld, P.: A hydrogen peroxide sensor for exhaled breath measurement. Sensors and Actuators B 111-112, 494–499 (2005)CrossRefGoogle Scholar
  68. 68.
    Taha, Z.H.: Nitric oxide measurements in biological samples. Talanta 61, 3–10 (2003)CrossRefGoogle Scholar
  69. 69.
    Hadjikoumi, I., Hassan, A., Milner, A.D.: Exhaled nitric oxide measurements in childhood asthma: Comparison of two sampling techniques. Pediatric Research 52, 745–749 (2002)Google Scholar
  70. 70.
    Zappacosta, B., Persichilli, S., Mormile, F., Minucci, A., Russo, A., Giardina, B., De Sole, P.: A fast chemiluminescent method for H2O2 measurement in exhaled breath condensate. Clinica Chimica Acta 310, 187–191 (2001)CrossRefGoogle Scholar
  71. 71.
    Cunningham, S., McColm, J.R., Pei Ho, L., Greening, A.P., Marshall, T.G.: Measurement of inflammatory markers in the breath condensate of children with cystic fibrosis. Eur. Respir. J. 15, 955–957 (2000)CrossRefGoogle Scholar
  72. 72.
    Dekhuijzen, P.N.R., Aben, K.K.H., Dekker, I., Aarts, L.P.H.J., Wielders, P.L.M.L., Van Herwaarden, C.L.A., Bast, A.: Increased exhalation of hydrogen peroxide in patients with stable and unstable chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine 154, 813–816 (1996)Google Scholar
  73. 73.
    Damiani, P., Burini, G.: Fluorometric Determination of Nitrite. Talanta 33, 649–652 (1986)CrossRefGoogle Scholar
  74. 74.
    Kojima, H., Hirotani, M., Urano, Y., Kikuchi, K., Higuchi, T., Nagano, T.: Fluorescent indicators for nitric oxide based on rhodamine chromophore. Tetrahedron Letters 41, 69–72 (2000)CrossRefGoogle Scholar
  75. 75.
    Barker, S.L.R., Clark, H.A., Swallen, S.F., Kopelman, R.: Ratiometric and Fluorescence-Lifetime-Based Biosensors Incorporating Cytochrome c’ and the Detection of Extra- and Intracellular Macrophage Nitric Oxide. Analytical Chemistry 71, 1767–1772 (1999)CrossRefGoogle Scholar
  76. 76.
    Szkudlarek, U., Maria, L., Kasielski, M., Kaucka, S., Nowak, D.: Exhaled hydrogen peroxide correlates with the release of reactive oxygen species by blood phagocytes in healthy subjects. Respiratory Medicine 97, 718–725 (2003)CrossRefGoogle Scholar
  77. 77.
    Svensson, S., Olin, A.-C., Larstad, M., Ljungkvist, G., Toren, K.: Determination of hydrogen peroxide in exhaled breath condensate by flow injection analysis with fluorescence detection. Journal of Chromatography B 809, 199–203 (2004)Google Scholar
  78. 78.
    Carpagnano, G.E., Kharitonov, S.A., Foschino-Barbaro, M.P., Resta, O., Gramiccioni, E., Barnes, P.J.: Increased inflammatory markers in the exhaled breath condensate of cigarette smokers. European Respiratory Journal 21, 589–593 (2003)CrossRefGoogle Scholar
  79. 79.
    Schumann, C., Triantafilou, K., Krueger, S., Hombach, V., Triantafilou, M., Becher, G., Lepper, P.M.: Detection of erythropoietin in exhaled breath condensate of nonhypoxic subjects using a multiplex bead array. Mediators of Inflammation (2006)Google Scholar
  80. 80.
    Sack, U., Scheibe, R., Woetzel, M., Hammerschmidt, S., Kuhn, H., Emmrich, F., Hoheisel, G., Wirtz, H., Gessner, C.: Multiplex analysis of cytokines in exhaled breath condensate. Cytometry 69A, 169–172 (2006)CrossRefGoogle Scholar
  81. 81.
    Edme, J.L., Tellart, A.S., Launay, D., Neviere, R., Grutzmacher, C., Boulenguez, C., Labalette, M., Hachulla, E., Hatron, P.Y., Dessaint, J.P., et al.: Cytokine concentrations in exhaled breath condensates in systemic sclerosis. Inflammation Research 57, 151–156 (2008)CrossRefGoogle Scholar
  82. 82.
    Matsunaga, K., Yanagisawa, S., Ichikawa, T., Ueshima, K., Akamatsu, K., Hirano, T., Nakanishi, M., Yamagata, T., Minakata, Y., Ichinose, M.: Airway cytokine expression measured by means of protein array in exhaled breath condensate: Correlation with physiologic properties in asthmatic patients. Journal of Allergy and Clinical Immunology 118, 84–90 (2006)CrossRefGoogle Scholar
  83. 83.
    Kostikas, K., Gaga, M., Papatheodorou, G., Karamanis, T., Orphanidou, D., Loukides, S.: Leukotriene B-4 in exhaled breath condensate and sputum supernatant in patients with COPD and asthma. Chest 127, 1553–1559 (2005)CrossRefGoogle Scholar
  84. 84.
    Kao, P.F., Liebeler, C.L., Blumenthal, M.N.: Measurement of pro-inflammatory and anti-inflammatory cytokines in exhaled breath condensates. Journal of Allergy and Clinical Immunology 113, S289 (2004)CrossRefGoogle Scholar
  85. 85.
    Esther Jr., C.R., Jasin, H.M., Collins, L.B., Swenberg, J.A., Boysen, G.: A mass spectrometric method to simultaneously measure a biomarker and dilution marker in exhaled breath condensate. Rapid Communications in Mass Spectrometry 22, 701–705 (2008)CrossRefGoogle Scholar
  86. 86.
    Phillips, M.: Method for the Collection and Assay of Volatile Organic Compounds in Breath. Analytical Biochemistry 247, 272–278 (1997)CrossRefGoogle Scholar
  87. 87.
    Kharitonov, S.A., Barnes, P.J.: Exhaled Markers of Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine 163, 1693–1722 (2001)Google Scholar
  88. 88.
    Van den Velde, S., Nevens, F., Van Hee, P., van Steenberghe, D., Quirynen, M.: GC-MS analysis of breath odor compounds in liver patients. Journal of Chromatography B 875, 344–348 (2008)CrossRefGoogle Scholar
  89. 89.
    Barnes, P.J.: Immunology of asthma and chronic obstructive pulmonary disease. Nature Reviews Immunology 8, 183–192 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Melinda G. Simon
    • 1
  • Cristina E. Davis
    • 2
  1. 1.Departments of Biomedical EngineeringUniversity of California DavisDavisUSA
  2. 2.Mechanical and Aeronautical EngineeringUniversity of California DavisDavisUSA

Personalised recommendations