Advertisement

Revising 1-Copy Equivalence in Replicated Databases with Snapshot Isolation

  • Francesc D. Muñoz-Escoí
  • Josep M. Bernabé-Gisbert
  • Ruben de Juan-Marín
  • Jose Enrique Armendáriz-Íñigo
  • Jose Ramon González De Mendívil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5870)

Abstract

Multiple database replication protocols have used replicas supporting the snapshot isolation level. They have provided some kind of one-copy equivalence, but such concept was initially conceived for serializable databases. In the snapshot isolation case, due to its reliance on multi-versioned concurrency control that never blocks read accesses, such one-copy equivalence admits two different variants. The first one consists in relying on sequential replica consistency, but it does not guarantee that the snapshot used by each transaction holds the updates of the last committed transactions in the whole replicated system, but only those of the last locally committed transaction. Thus, a single user might see inconsistent results when two of her transactions have been served by different delegate replicas: the updates of the first one might not be in the snapshot of the second. The second variant avoids such problem, but demands atomic replica consistency, blocking the start (i.e., in many cases, read accesses) of new transactions. Several protocols of each kind exist nowadays, and most of them have given different names to their intended correctness criterion. We survey such previous works and propose uniform names to these criteria, justifying some of their properties.

Keywords

Consistency Model Concurrency Control Correctness Criterion Sequential Consistency Snapshot Isolation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mosberger, D.: Memory consistency models. Operating Systems Review 27(1), 18–26 (1993)CrossRefGoogle Scholar
  2. 2.
    Adve, S.V., Gharachorloo, K.: Shared memory consistency models: A tutorial. IEEE Computer 29(12), 66–76 (1996)Google Scholar
  3. 3.
    Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery in Database Systems. Addison Wesley, Reading (1987)Google Scholar
  4. 4.
    Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil, E., O’Neil, P.: A critique of ANSI SQL isolation levels. In: Proc. of the ACM SIGMOD International Conference on Management of Data, San José, CA, USA, pp. 1–10. ACM Press, New York (1995)Google Scholar
  5. 5.
    Adya, A.: Weak Consistency: A Generalized Theory and Optimistic Implementations of Distributed Transactions. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, USA (1999)Google Scholar
  6. 6.
    Fekete, A., Liarokapis, D., O’Neil, E.J., O’Neil, P.E., Shasha, D.: Making snapshot isolation serializable. ACM Trans. Database Syst. 30(2), 492–528 (2005)CrossRefGoogle Scholar
  7. 7.
    Lamport, L.: How to make a multiprocessor computer that correctly executes multiprocess programs. IEEE Trans. Computers 28(9), 690–691 (1979)zbMATHCrossRefGoogle Scholar
  8. 8.
    Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)CrossRefGoogle Scholar
  9. 9.
    Cholvi, V., Bernabéu, J.: Relationships between memory models. Information Processing Letters 90, 53–58 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Goodman, J.: Cache consistency and sequential consistency. Technical Report 61, IEEE Scalable Coherence Interface Working Group (1989)Google Scholar
  11. 11.
    Daudjee, K., Salem, K.: Lazy database replication with snapshot isolation. In: 32nd International Conference on Very Large Data Bases, Seoul, Korea, pp. 715–726. ACM, New York (2006)Google Scholar
  12. 12.
    Elnikety, S., Zwaenepoel, W., Pedone, F.: Database replication using generalized snapshot isolation. In: Symposium on Reliable Distributed Systems, Orlando, FL, USA, pp. 73–84. IEEE-CS Press, Los Alamitos (2005)Google Scholar
  13. 13.
    Wiesmann, M., Schiper, A.: Comparison of database replication techniques based on total order broadcast. IEEE Trans. on Knowledge and Data Engineering 17(4), 551–566 (2005)CrossRefGoogle Scholar
  14. 14.
    Bernabé-Gisbert, J.M., Salinas-Monteagudo, R., Irún-Briz, L., Muñoz-Escoí, F.D.: Managing multiple isolation levels in middleware database replication protocols. In: Guo, M., Yang, L.T., Di Martino, B., Zima, H.P., Dongarra, J., Tang, F. (eds.) ISPA 2006. LNCS, vol. 4330, pp. 511–523. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Oliveira, R.C., Pereira, J., Correia Jr., A., Archibald, E.: Revisiting 1-copy equivalence in clustered databases. In: Symposium on Applied Computing, Dijon, France, pp. 728–732. ACM Press, New York (2006)Google Scholar
  16. 16.
    Finkelstein, S., Brendle, R., Jacobs, D.: Principles for inconsistency. In: 4th Biennial Conf. on Innovative Data Systems Research (CIDR), Asilomar, CA, USA (2009)Google Scholar
  17. 17.
    Helland, P., Campbell, D.: Building on quicksand. In: 4th Biennial Conf. on Innovative Data Systems Research (CIDR), Asilomar, CA, USA (2009)Google Scholar
  18. 18.
    Agrawal, D., Alonso, G., El Abbadi, A., Stanoi, I.: Exploiting atomic broadcast in replicated databases. In: 3rd International Euro-Par Conference, Passau, Germany, pp. 496–503. Springer, Heidelberg (1997)Google Scholar
  19. 19.
    Pedone, F., Guerraoui, R., Schiper, A.: Exploiting atomic broadcast in replicated databases. In: Pritchard, D., Reeve, J.S. (eds.) Euro-Par 1998. LNCS, vol. 1470, pp. 513–520. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  20. 20.
    Kemme, B., Alonso, G.: A new approach to developing and implementing eager database replication protocols. ACM Transactions on Database Systems 25(3), 333–379 (2000)CrossRefGoogle Scholar
  21. 21.
    Lin, Y., Kemme, B., Patiño-Martínez, M., Jiménez-Peris, R.: Middleware based data replication providing snapshot isolation. In: SIGMOD Conf. on Management of Data, Baltimore, MD, USA, pp. 419–430. ACM Press, New York (2005)Google Scholar
  22. 22.
    Guerraoui, R., Garbinato, B., Mazouni, K.: The GARF library of DSM consistency models. In: ACM SIGOPS European Workshop, pp. 51–56 (1994)Google Scholar
  23. 23.
    Wu, S., Kemme, B.: Postgres-R(SI): Combining replica control with concurrency control based on snapshot isolation. In: 21st Intl. Conf. on Data Eng. (ICDE), Tokyo, Japan, pp. 422–433. IEEE-CS Press, Los Alamitos (2005)Google Scholar
  24. 24.
    Muñoz-Escoí, F.D., Pla-Civera, J., Ruiz-Fuertes, M.I., Irún-Briz, L., Decker, H., Armendáriz-Iñigo, J.E., González de Mendívil, J.R.: Managing transaction conflicts in middleware-based database replication architectures. In: Symposium on Reliable Distributed Systems, pp. 401–410 (2006)Google Scholar
  25. 25.
    Rodrigues, L., Miranda, H., Almeida, R., Martins, J., Vicente, P.: The GlobData fault-tolerant replicated distributed object database. In: 1st EurAsian Conf. on Information and Communication Technology, Shiraz, Iran, pp. 426–433. Springer, Heidelberg (2002)Google Scholar
  26. 26.
    Juárez-Rodríguez, J.R., Armendáriz-Iñigo, J.E., González de Mendívil, J.R., Muñoz-Escoí, F.D., Garitagoitia, J.R.: A weak voting database replication protocol providing different isolation levels. In: 7th Intl. Conf. on New Technologies of Distr. Syst., Marrakesh, Morocco, pp. 261–268 (2007)Google Scholar
  27. 27.
    Plattner, C., Alonso, G.: Ganymed: Scalable and flexible replication. IEEE Data Eng. Bull. 27(2), 27–34 (2004)Google Scholar
  28. 28.
    Pedone, F.: The Database State Machine and Group Communication Issues. PhD thesis, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland (1999)Google Scholar
  29. 29.
    Zuikevičiūtė, V., Pedone, F.: Revisiting the database state machine. In: VLDB Workshop on Design, Implementation and Deployment of Database Replications, Trondheim, Norway (2005)Google Scholar
  30. 30.
    Rodrigues, L., Carvalho, N., Miedes, E.: Supporting linearizable semantics in replicated databases. In: 7th IEEE International Symposium on Networking Computing and Applications, Cambridge, MA, USA, pp. 263–266. IEEE-CS Press, Los Alamitos (2008)CrossRefGoogle Scholar
  31. 31.
    Salinas, R., Muñoz-Escoí, F.D., Armendáriz-Íñigo, J.E., González de Mendívil, J.R.: A performance analysis of g-bound, a consistency protocol supporting multiple isolation levels. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM-WS 2008. LNCS, vol. 5333, pp. 914–923. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  32. 32.
    Zuikevičiūtė, V., Pedone, F.: Correctness criteria for database replication: Theoretical and practical aspects. In: 10th International Symposium on Distributed Objects, Middleware and Applications, Mexico, pp. 639–656. Springer, Heidelberg (2008)Google Scholar
  33. 33.
    Breitbart, Y., Garcia-Molina, H., Silberschatz, A.: Overview of multidatabase transaction management. VLDB J. 1(2), 181–239 (1992)CrossRefGoogle Scholar
  34. 34.
    Attiya, H., Welch, J.L.: Sequential consistency versus linearizability. ACM Trans. Comput. Syst. 12(2), 91–122 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Francesc D. Muñoz-Escoí
    • 1
  • Josep M. Bernabé-Gisbert
    • 1
  • Ruben de Juan-Marín
    • 1
  • Jose Enrique Armendáriz-Íñigo
    • 2
  • Jose Ramon González De Mendívil
    • 2
  1. 1.Instituto Tecnológico de InformáticaUniv. Politécnica de ValenciaValenciaSpain
  2. 2.Depto. de Ing. Matemática e InformáticaUniv. Pública de NavarraPamplonaSpain

Personalised recommendations