Advertisement

Complex Schema Match Discovery and Validation through Collaboration

  • Khalid Saleem
  • Zohra Bellahsene
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5870)

Abstract

In this paper, we demonstrate an approach for the discovery and validation of n:m schema match in the hierarchical structures like the XML schemata. Basic idea is to propose an n:m node match between children (leaf nodes) of two matching non-leaf nodes of the two schemata. The similarity computation of the two non-leaf nodes is based upon the syntactic and linguistic similarity of the node labels supported by the similarity among the ancestral paths from nodes to the root. The n:m matching proposition is then validated with the help of the mini-taxonomies: hierarchical structures extracted from a large set of schema trees belonging to the same domain. The technique intuitively supports the collective intelligence of the domain users, indirectly collaborating for the validation of the complex match propositions.

Keywords

Complex Schema Matching Mini-taxonomies Collaboration Tree Mining Large scale 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Do, H.-H., Rahm, E.: Matching large schemas: Approaches and evaluation. Information Systems 32(6), 857–885 (2007)CrossRefGoogle Scholar
  2. 2.
    Doan, A., Madhavan, J., Dhamankar, R., Domingos, P., Halevy, A.Y.: Learning to match ontologies on the Semantic Web. VLDB J. 12(4), 303–319 (2003)CrossRefGoogle Scholar
  3. 3.
    Embley, D.W., Xu, L., Ding, Y.: Automatic Direct and Indirect Schema Mapping: Experiences and Lessons Learned. ACM SIGMOD Record 33(4), 14–19 (2004)CrossRefGoogle Scholar
  4. 4.
    Giunchiglia, F., Shvaiko, P., Yatskevich, M.: S-Match: an Algorithm and an Implementation of Semantic Matching. In: Bussler, C.J., Davies, J., Fensel, D., Studer, R. (eds.) ESWS 2004. LNCS, vol. 3053, pp. 61–75. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    He, B., Chang, K.C.-C., Han, J.: Discovering complex matchings across web query interfaces: a correlation mining approach. In: KDD, pp. 148–157 (2004)Google Scholar
  6. 6.
    Lee, D., Mani, M., Chiu, F., Chu, W.W.: Net Cot: Translating relational schemas to XML schemas using semantic constraints. In: CIKM (2002)Google Scholar
  7. 7.
    Melnik, S., Rahm, E., Bernstein, P.A.: RONDO: A Programming Platform for Generic Model Management. In: SIGMOD, pp. 193–204 (2003)Google Scholar
  8. 8.
    Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB J. 10(4), 334–350 (2001)zbMATHCrossRefGoogle Scholar
  9. 9.
    Saleem, K., Bellahsene, Z.: Automatic extraction of structurally coherent mini-taxonomies. In: ER (2008)Google Scholar
  10. 10.
    Saleem, K., Bellahsene, Z., Hunt, E.: PORSCHE: Performance ORiented SCHEma mediation. Information Systems - Elsevier 33(7-8), 637–657 (2008)Google Scholar
  11. 11.
    Wang, G., Zavesov, V., Rifaieh, R., Rajasekar, A., Goguen, J., Miller, M.: Towards User Centric Schema Mapping Platform. In: VLDB Workshop Semantic Data and Semantic Integration (2007)Google Scholar
  12. 12.
    Zaki, M.J.: Efficiently Mining Frequent Embedded Unordered Trees. Fundamenta Informaticae 66(1-2), 33–52 (2005)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Khalid Saleem
    • 1
  • Zohra Bellahsene
    • 1
  1. 1.LIRMM - UMR 5506 CNRSUniversity Montpellier 2Montpellier

Personalised recommendations