Model Checking Coalition Nash Equilibria in MAD Distributed Systems

  • Federico Mari
  • Igor Melatti
  • Ivano Salvo
  • Enrico Tronci
  • Lorenzo Alvisi
  • Allen Clement
  • Harry Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5873)

Abstract

We present two OBDD based model checking algorithms for the verification of Nash equilibria in finite state mechanisms modeling Multiple Administrative Domains (MAD) distributed systems with possibly colluding agents (coalitions) and with possibly faulty or malicious nodes (Byzantine agents). Given a finite state mechanism, a proposed protocol for each agent and the maximum sizes f for Byzantine agents and q for agents collusions, our model checkers return Pass if the proposed protocol is an ε-f-q-Nash equilibrium, i.e. no coalition of size up to q may have an interest greater than ε in deviating from the proposed protocol when up to f Byzantine agents are present, Fail otherwise. We implemented our model checking algorithms within the NuSMV model checker: the first one explicitly checks equilibria for each coalition, while the second represents symbolically all coalitions. We present experimental results showing their effectiveness for moderate size mechanisms. For example, we can verify coalition Nash equilibria for mechanisms which corresponding normal form games would have more than 5 ×1021 entries. Moreover, we compare the two approaches, and the explicit algorithm turns out to outperform the symbolic one. To the best of our knowledge, no model checking algorithm for verification of Nash equilibria of mechanisms with coalitions has been previously published.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aiyer, A.S., Alvisi, L., Clement, A., Dahlin, M., Martin, J.-P., Porth, C.: Bar fault tolerance for cooperative services. In: Proc. of SOSP 2005, pp. 45–58. ACM Press, New York (2005)CrossRefGoogle Scholar
  2. 2.
    Batten, C., Barr, K., Saraf, A., Trepetin, S.: pStore: A secure peer-to-peer backup system. Technical Memo MIT-LCS-TM-632, Massachusetts Institute of Technology Laboratory for Computer Science (October 2002)Google Scholar
  3. 3.
    Bryant, R.: Graph-based algorithms for boolean function manipulation. IEEE Trans. on Computers C-35(8), 677–691 (1986)Google Scholar
  4. 4.
    Buttyán, L., Hubaux, J.-P.: Security and Cooperation in Wireless Networks - Thwarting Malicious and Selfish Behavior in the Age of Ubiquitous Computing (version 1.5). Cambridge University Press, Cambridge (2007)Google Scholar
  5. 5.
    Chien, S., Sinclair, A.: Convergence to approximate nash equilibria in congestion games. In: Proc. of SODA 2007, pp. 169–178 (2007)Google Scholar
  6. 6.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cambridge (1999)Google Scholar
  7. 7.
    Clement, A., Li, H., Napper, J., Martin, J.-P., Alvisi, L., Dahlin, M.: BAR primer. In: Proc. of DSN 2008 (2008)Google Scholar
  8. 8.
    Cohen, B.: Incentives build robustness in bittorrent. In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735. Springer, Heidelberg (2003)Google Scholar
  9. 9.
    Cox, L.P., Noble, B.D.: Samsara: honor among thieves in peer-to-peer storage. In: Proc. of SOSP 2003, pp. 120–132. ACM, New York (2003)CrossRefGoogle Scholar
  10. 10.
    CUDD Web Page (2004), http://vlsi.colorado.edu/~fabio/
  11. 11.
    Eliaz, K.: Fault tolerant implementation. Review of Economic Studies 69(3), 589–610 (2002)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Everett, H.: Recursive games. Contributions to the theory of games. Annals of Mathematical Studies, vol. III, p. 39 (1957)Google Scholar
  13. 13.
    Feigenbaum, J., Sami, R., Shenker, S.: Mechanism design for policy routing. In: Proc. of PODC 2004, pp. 11–20. ACM, New York (2004)CrossRefGoogle Scholar
  14. 14.
    Fudenberg, D., Tirole, J.: Game theory. MIT Press, Cambridge (1991)Google Scholar
  15. 15.
    Hayrapetyan, A., Tardos, É., Wexler, T.: The effect of collusion in congestion games. In: Proc. of STOC 2006, pp. 89–98. ACM, New York (2006)Google Scholar
  16. 16.
    Li, H., Clement, A., Wong, E., Napper, J., Roy, I., Alvisi, L., Dahlin, M.: BAR gossip. In: Proc. of OSDI 2006 (2006)Google Scholar
  17. 17.
    Lillibridge, M., Elnikety, S., Birrell, A., Burrows, M., Isard, M.: A cooperative internet backup scheme. In: Proc. of ATEC 2003, p. 3. USENIX Association (2003)Google Scholar
  18. 18.
    Mahajan, R., Rodrig, M., Wetherall, D., Zahorjan, J.: Sustaining cooperation in multi-hop wireless networks. In: Proc. of NSDI 2005, pp. 231–244. USENIX Association (2005)Google Scholar
  19. 19.
    Maniatis, P., Rosenthal, D.S.H., Roussopoulos, M., Baker, M., Giuli, T.J., Muliadi, Y.: Preserving peer replicas by rate-limited sampled voting. In: Proc. SOSP 2003, pp. 44–59. ACM, New York (2003)CrossRefGoogle Scholar
  20. 20.
    Mari, F., Melatti, I., Salvo, I., Tronci, E., Alvisi, L., Clement, A., Li, H.: Model checking nash equilibria in mad distributed system. In: Cimatti, A., Jones, R.B. (eds.) Proc. of FMCAD 2008, pp. 85–92. IEEE, Los Alamitos (2008)Google Scholar
  21. 21.
    Nisan, N., Ronen, A.: Algorithmic mechanism design (extended abstract). In: Proc. of STOC 1999, pp. 129–140. ACM, New York (1999)Google Scholar
  22. 22.
    NuSMV Web Page (2006), http://nusmv.irst.itc.it/
  23. 23.
    Shneidman, J., Parkes, D.C.: Specification faithfulness in networks with rational nodes. In: Proc. of PODC 2004, pp. 88–97. ACM, New York (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Federico Mari
    • 1
  • Igor Melatti
    • 1
  • Ivano Salvo
    • 1
  • Enrico Tronci
    • 1
  • Lorenzo Alvisi
    • 2
  • Allen Clement
    • 2
  • Harry Li
    • 2
  1. 1.Dep. of Computer ScienceUniversity of Rome “La Sapienza”RomaItaly
  2. 2.Dep. of Computer ScienceUniversity of Texas at AustinAustinUSA

Personalised recommendations