An Optimal Self-stabilizing Firing Squad

  • Danny Dolev
  • Ezra N. Hoch
  • Yoram Moses
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5873)

Abstract

Consider a fully connected network where up to t processes may crash, and all processes start in an arbitrary memory state. The self-stabilizing firing squad problem consists of eventually guaranteeing simultaneous response to an external input. This is modeled by requiring that the non-crashed processes “fire” simultaneously if some correct process received an external “go” input, and that they only fire as a response to some process receiving such an input. This paper presents Fire-Squad, the first self-stabilizing firing squad algorithm.

The Fire-Squad algorithm is optimal in two respects: (a) Once the algorithm is in a safe state, it fires in response to a go input as fast as any other algorithm does, and (b) Starting from an arbitrary state, it converges to a safe state as fast as any other algorithm does.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bazzi, R., Neiger, G.: The possibility and the complexity of achieving fault-tolerant coordination. In: PODC 1992, pp. 203–214. ACM, New York (1992)CrossRefGoogle Scholar
  2. 2.
    Burns, J.E., Lynch, N.A.: The byzantine firing squad problem. Advances in Computing Research: Parallel and Distributed Computing 4, 147–161 (1987)MathSciNetGoogle Scholar
  3. 3.
    Coan, B.A., Dolev, D., Dwork, C., Stockmeyer, L.J.: The distributed firing squad problem. SIAM J. Comput. 18(5), 990–1012 (1989)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Dolev, D., Reischuk, R., Strong, R.H.: Early stopping in byzantine agreement. J. ACM 37(4), 720–741 (1990)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)MATHGoogle Scholar
  6. 6.
    Dolev, S., Welch, J.L.: Self-stabilizing clock synchronization in the presence of byzantine faults. Journal of the ACM 51(5), 780–799 (2004)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Dolev, S.: Possible and impossible self-stabilizing digital clock synchronization in general graphs. Real-Time Systems 12(1), 95–107 (1997)CrossRefGoogle Scholar
  8. 8.
    Dwork, C., Moses, Y.: Knowledge and common knowledge in a Byzantine environment: crash failures. Information and Computation 88(2), 156–186 (1990)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge. MIT Press, Cambridge (1995)MATHGoogle Scholar
  10. 10.
    Halpern, J.Y., Moses, Y.: Knowledge and common knowledge in a distributed environment. Journal of the ACM 37(3), 549–587 (1990); A preliminary version appeared in PODC 1984MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hoch, E.N., Dolev, D., Daliot, A.: Self-stabilizing byzantine digital clock synchronization. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280, pp. 350–362. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Lamport, L., Melliar-Smith, P.M.: Synchronizing clocks in the presence of faults. Journal of the ACM 32(1), 52–78 (1985)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Mizrahi, T., Moses, Y.: Continuous consensus via common knowledge. Distributed Computing 20(5), 305–321 (2008)CrossRefGoogle Scholar
  14. 14.
    Mizrahi, T., Moses, Y.: Continuous consensus with failures and recoveries. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 408–422. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Moses, Y., Tuttle, M.R.: Programming simultaneous actions using common knowledge. Algorithmica 3, 121–169 (1988)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Moses, Y., Raynal, M.: Revisiting simultaneous consensus with crash failures. J. Parallel Distrib. Comput. 69(4), 400–409 (2009)CrossRefGoogle Scholar
  17. 17.
    Neiger, G., Tuttle, M.R.: Common knowledge and consistent simultaneous coordination. Distrib. Comput. 6(3), 181–192 (1993)MATHCrossRefGoogle Scholar
  18. 18.
    Patt-Shamir, B.: A Theory of Clock Synchronization. Doctoral thesis, MIT (October 1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Danny Dolev
    • 1
  • Ezra N. Hoch
    • 1
  • Yoram Moses
    • 2
  1. 1.The Hebrew University of JerusalemJerusalemIsrael
  2. 2.Technion—Israel Institute of TechnologyHaifaIsrael

Personalised recommendations