Analysis of a Clock Synchronization Protocol for Wireless Sensor Networks

  • Faranak Heidarian
  • Julien Schmaltz
  • Frits Vaandrager
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5850)


We study a clock synchronization protocol for the Chess WSN. First, we model the protocol as a network of timed automata and verify various instances using the Uppaal model checker. Next, we present a full parametric analysis of the protocol for the special case of cliques (networks with full connectivity), that is, we give constraints on the parameters that are both necessary and sufficient for correctness. These results have been checked using the proof assistant Isabelle. Finally, we present a negative result for the special case of line topologies: for any instantiation of the parameters, the protocol will eventually fail if the network grows. This result suggests a variation of the fundamental result of Fan and Lynch on gradient clock synchronization, where the synchronization eventually fails as the network diameter grows, for a setting with logical clocks whose value may also decrease.


industrial application clock synchronization timed automata model checking theorem proving wireless sensor networks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Assegei, F.A.: Decentralized frame synchronization of a TDMA-based wireless sensor network. Master’s thesis, Eindhoven University of Technology, Department of Electrical Engineering (2008)Google Scholar
  2. 2.
    Bakhshi, R., Bonnet, F., Fokkink, W., Haverkort, B.: Formal analysis techniques for gossiping protocols. SIGOPS Oper. Syst. Rev. 41(5), 28–36 (2007)CrossRefGoogle Scholar
  3. 3.
    Behrmann, G., David, A., Larsen, K.G., Håkansson, J., Pettersson, P., Yi, W., Hendriks, M.: Uppaal 4.0. In: Third International Conference on the Quantitative Evaluation of SysTems (QEST 2006), Riverside, CA, USA, September 11-14, pp. 125–126. IEEE Computer Society, Los Alamitos (2006)Google Scholar
  4. 4.
    Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Brown, G.M., Pike, L.: Easy parameterized verification of biphase mark and 8n1 protocols. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 58–72. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H., Swinehart, D., Terry, D.: Epidemic algorithms for replicated database maintenance. In: PODC 1987: Proceedings of the sixth annual ACM Symposium on Principles of distributed computing, pp. 1–12. ACM, New York (1987)CrossRefGoogle Scholar
  7. 7.
    Fan, R., Lynch, N.A.: Gradient clock synchronization. Distributed Computing 18(4), 255–266 (2006)CrossRefGoogle Scholar
  8. 8.
    Kermarrec, A.-M., van Steen, M.: Gossiping in distributed systems. SIGOPS Oper. Syst. Rev. 41(5), 2–7 (2007)CrossRefGoogle Scholar
  9. 9.
    Lamport, L.: Time, clocks and the ordering of events in distributed systems. Communications of the ACM 21(7), 558–564 (1978)zbMATHCrossRefGoogle Scholar
  10. 10.
    Locher, T., Wattenhofer, R.: Oblivious gradient clock synchronization. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 520–533. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Meier, L., Thiele, L.: Gradient clock synchronization in sensor networks. Technical Report 219, Computer Engineering and Networks Lab., ETH Zurich (2005)Google Scholar
  12. 12.
    Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  13. 13.
    Pussente, R.M., Barbosa, V.C.: An algorithm for clock synchronization with the gradient property in sensor networks. Parallel and Distributed Computing 69, 261–265 (2009)CrossRefGoogle Scholar
  14. 14.
    QUASIMODO. Case studies: Models, Deliverable 5.5 from the FP7 ICT STREP project 214755 (QUASIMODO) (January 2009)Google Scholar
  15. 15.
    QUASIMODO. Preliminary description of case studies, Deliverable 5.2 from the FP7 ICT STREP project 214755 (QUASIMODO) (January 2009)Google Scholar
  16. 16.
    Rushby, J.: A formally verified algorithm for clock synchronization under a hybrid fault model. In: PODC 1994: Thirteenth annual ACM symposium on Principles of distributed computing, pp. 304–313. ACM, New York (1994)CrossRefGoogle Scholar
  17. 17.
    Schmaltz, J.: A formal model of clock domain crossing and automated verification of time-triggered hardware. In: Baumgartner, J., Sheeran, M. (eds.) Formal methods in computer aided design, pp. 223–230. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  18. 18.
    Sundararaman, B., Buy, U., Kshemkalyani, A.D.: Clock synchronization for wireless sensor networks: a survey. Ad Hoc Networks 3(3), 281–323 (2005)CrossRefGoogle Scholar
  19. 19.
    Tjoa, R., Chee, K.L., Sivaprasad, P.K., Rao, S.V., Lim, J.G.: Clock drift reduction for relative time slot tdma-based sensor networks. In: Proceedings of the 15th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2004), September 2004, pp. 1042–1047 (2004)Google Scholar
  20. 20.
    Umeno, S.: Event order abstraction for parametric real-time system verification. In: EMSOFT, pp. 1–10. ACM, New York (2008)CrossRefGoogle Scholar
  21. 21.
    Vaandrager, F.W., de Groot, A.L.: Analysis of a biphase mark protocol with Uppaal and PVS. Formal Asp. Comput. 18(4), 433–458 (2006)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Faranak Heidarian
    • 1
  • Julien Schmaltz
    • 1
  • Frits Vaandrager
    • 1
  1. 1.Institute for Computing and Information SciencesRadboud University NijmegenNijmegenThe Netherlands

Personalised recommendations