Field-Sensitive Value Analysis by Field-Insensitive Analysis

  • Elvira Albert
  • Puri Arenas
  • Samir Genaim
  • Germán Puebla
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5850)


Shared and mutable data-structures pose major problems in static analysis and most analyzers are unable to keep track of the values of numeric variables stored in the heap. In this paper, we first identify sufficient conditions under which heap allocated numeric variables in object oriented programs (i.e., numeric fields) can be handled as non-heap allocated variables. Then, we present a static analysis to infer which numeric fields satisfy these conditions at the level of (sequential) bytecode. This allows instrumenting the code with ghost variables which make such numeric fields observable to any field-insensitive value analysis. Our experimental results in termination analysis show that we greatly enlarge the class of analyzable programs with a reasonable overhead.


Memory Location Abstract Interpretation Reference Variable Abstract Domain Program Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aiken, A., Foster, J.S., Kodumal, J., Terauchi, T.: Checking and inferring local non-aliasing. In: Proc.of PDLI 2003, pp. 129–140. ACM, New York (2003)Google Scholar
  2. 2.
    Albert, E., Arenas, P., Codish, M., Genaim, S., Puebla, G., Zanardini, D.: Termination Analysis of Java Bytecode. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051, pp. 2–18. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Banerjee, A., Naumann, D., Rosenberg, S.: Regional logic for local reasoning about global invariants. In: Vitek, J. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 387–411. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Chang, B.-Y.E., Leino, K.R.M.: Abstract interpretation with alien expressions and heap structures. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 147–163. Springer, Heidelberg (2005)Google Scholar
  5. 5.
    Codish, M., Taboch, C.: A semantic basis for the termination analysis of logic programs. J. Log. Program. 41(1), 103–123 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Cousot, P., Cousot, R.: Abstract Interpretation: a Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. In: POPL 1977, pp. 238–252. ACM, New York (1977)CrossRefGoogle Scholar
  7. 7.
    Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a program. In: Proc. POPL. ACM, New York (1978)Google Scholar
  8. 8.
    Deutsch, A.: Interprocedural may-alias analysis for pointers: Beyond k-limiting. In: PLDI, pp. 230–241 (1994)Google Scholar
  9. 9.
    Lindholm, T., Yellin, F.: The Java Virtual Machine Specification. Addison-Wesley, Reading (1996)Google Scholar
  10. 10.
    Logozzo, F.: Cibai: An abstract interpretation-based static analyzer for modular analysis and verification of java classes. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 283–298. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Miné, A.: Field-sensitive value analysis of embedded c programs with union types and pointer arithmetics. In: LCTES (2006)Google Scholar
  12. 12.
    Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computation 19(1), 31–100 (2006)zbMATHCrossRefGoogle Scholar
  13. 13.
    Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis, 2nd edn. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  14. 14.
    O’Hearn, P.W., Reynolds, J.C., Yang, H.: Local Reasoning about Programs that Alter Data Structures. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142, p. 1. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear ranking functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 239–251. Springer, Heidelberg (2004)Google Scholar
  16. 16.
    Reynolds, J.C.: Separation Logic: A Logic for Shared Mutable Data Structures. In: LICS, pp. 55–74 (2002)Google Scholar
  17. 17.
    Spoto, F., Hill, P., Payet, E.: Path-length analysis of object-oriented programs. In: EAAI 2006. ENTCS. Elsevier, Amsterdam (2006)Google Scholar
  18. 18.
    Vallee-Rai, R., Hendren, L., Sundaresan, V., Lam, P., Gagnon, E., Co, P.: Soot - a Java optimization framework. In: CASCON 1999, pp. 125–135 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Elvira Albert
    • 1
  • Puri Arenas
    • 1
  • Samir Genaim
    • 1
  • Germán Puebla
    • 2
  1. 1.DSICComplutense University of Madrid (UCM)Spain
  2. 2.CLIP, DLSIISTechnical University of Madrid (UPM)Spain

Personalised recommendations