An Efficient Method for Computing Alignment Diagnoses

  • Christian Meilicke
  • Heiner Stuckenschmidt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5837)


Formal, logic-based semantics have long been neglected in ontology matching. As a result, almost all matching systems produce incoherent alignments of ontologies. In this paper we propose a new method for repairing such incoherent alignments that extends previous work on this subject. We describe our approach within the theory of diagnosis and introduce the notion of a local optimal diagnosis. We argue that computing a local optimal diagnosis is a reasonable choice for resolving alignment incoherence and suggest an efficient algorithm. This algorithm partially exploits incomplete reasoning techniques to increase runtime performance. Nevertheless, the completeness and optimality of the solution is still preserved. Finally, we test our approach in an experimental study and discuss results with respect to runtime and diagnostic quality.


Description Logic Matching System Translation Function Reference Alignment Ontology Match 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borgida, A., Serafini, L.: Distributed description logics: Assimilating information from peer sources. Journal on Data Semantics (2003)Google Scholar
  2. 2.
    Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  3. 3.
    Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory of NP-completeness. W. H. Freeman and Company, New York (1979)zbMATHGoogle Scholar
  4. 4.
    Giunchiglia, F., Yatskevich, M., Shvaiko, P.: Semantic matching: Algorithms and implementation. Journal on Data Semantics (2007)Google Scholar
  5. 5.
    Jean-Mary, Y.R., Kabuka, M.R.: Asmov: Results for OAEI 2008. In: Proc. of the ISWC 2008 workshop on ontology matching, Karlsruhe, Germany (2008)Google Scholar
  6. 6.
    Jimenez-Ruiz, E., Grau, B.C., Horrocks, I., Berlanga, R.: Ontology integration using mappings: Towards getting the right logical consequences. In: Proc. of the 6th Annual European Semantic Web Conference, Heraklion, Crete, Greece (2009)Google Scholar
  7. 7.
    Meilicke, C., Stuckenschmidt, H.: Applying logical constraints to ontology matching. In: Proc. of the 30th German Conference on Artificial Intelligence, Osnabrück, Germany (2007)Google Scholar
  8. 8.
    Meilicke, C., Stuckenschmidt, H.: Incoherence as a basis for measuring the quality of ontology mappings. In: Proc. of the ISWC 2008 Workshop on Ontology Matching, Karlsruhe, Germany (2008)Google Scholar
  9. 9.
    Meilicke, C., Stuckenschmidt, H.: An efficient method for computing a local optimal alignment diagnosis. Technical report, University Mannheim, Computer Science Institute (2009)Google Scholar
  10. 10.
    Meilicke, C., Stuckenschmidt, H., Svab-Zamazal, O.: A reasoning-based support tool for ontology mapping evaluation. In: Proc. of the European Semantic Web Conference, Heraklion, Greece (2009)Google Scholar
  11. 11.
    Meilicke, C., Tamilin, A., Stuckenschmidt, H.: Repairing ontology mappings. In: Proc. of the Twenty-Second Conference on Artificial Intelligence, Vancouver, Canada (2007)Google Scholar
  12. 12.
    Meilicke, C., Völker, J., Stuckenschmidt, H.: Learning disjointness for debugging mappings between lightweight ontologies. In: Proc. of the 16th International Conference on Knowledge Engineering and Knowledge Management, Acitrezza, Italy (2008)Google Scholar
  13. 13.
    Qi, G., Haase, P., Huang, Z., Ji, Q., Pan, J.Z., Völker, J.: A kernel revision operator for terminologies - algorithms and evaluation. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 419–434. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence (1987)Google Scholar
  15. 15.
    Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of description logic terminologies. In: Proc. of 18th International Joint Conference on Artificial Intelligence, Acapulco, Mexico (2003)Google Scholar
  16. 16.
    Serafini, L., Tamilin, A.: Local tableaux for reasoning in distributed description logics. In: Proc. of the Int. Workshop on Description Logics, Whistler, Canada (2004)Google Scholar
  17. 17.
    Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL reasoner. Journal of Web Semantics (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Christian Meilicke
    • 1
  • Heiner Stuckenschmidt
    • 1
  1. 1.Computer Science InstituteUniversity of MannheimMannheimGermany

Personalised recommendations