Automatic Generation of Semantic Metadata as Basis for User Modeling and Adaptation

  • Kees van der Sluijs
  • Geert-Jan Houben
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5830)


With the help of the simple and world-wide accepted technique of tagging, users can help to collaboratively provide metadata over previously uncharted collections of multimedia documents. However, the semantics of tags are rather limited and not always as helpful in disclosing a dataset as a proper ontology can be. In this paper we introduce the Relco framework that applies syntactic, semantic and collaborative techniques to connect tags to ontological concepts, which helps to quickly get more semantics about a tag. We demonstrate the applicability of our techniques in two concrete Web applications: one in the educational domain and one in the cultural heritage domain. For the former we describe how students are better able to find the information in socially tagged videos and in the latter we also show how the used techniques allow building a faceted browser over the previously uncharted multimedia objects and we show which techniques could be applied to control the quality of user driven annotation.


Tag Ontology Alignment Semantic Web String Matching Semantic Expansion Faceted Browsing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Golder, S., Huberman, B.A.: Usage Patterns of Collaborative Tagging Systems. Journal of Information Science 32(2), 198–208 (2006)CrossRefGoogle Scholar
  2. 2.
    van Setten, M., Brussee, R., van Vliet, H., Gazendam, L., van Houten, Y., Veenstra, M.: On the Importance of "Who Tagged What". In: Workshop on the Social Navigation and Community-Based Adaptation Technologies, held in conjunction with Adaptive Hypermedia and Adaptive Web-Based Systems (AH 2006), Dublin, Ireland (2006)Google Scholar
  3. 3.
    Mika, P.: Ontologies Are Us: A Unified Model of Social Networks and Semantics. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 522–536. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Choy, S.-O., Lui, A.K.: Web Information Retrieval in Collaborative Tagging Systems. In: Proceedings of the International Conference on Web Intelligence, pp. 352–355. IEEE Press, New York (2006)Google Scholar
  5. 5.
    Specia, L., Motta, E.: Integrating Folksomonies with the Semantic Web. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 624–639. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Damerau, F.J.: A Technique for Computer Detection and Correction of Spelling Errors. Communications of the ACM 7(3), 171–176 (1964)CrossRefGoogle Scholar
  7. 7.
    Jaro, M.A.: Advances in Record Linking Methodology as Applied to the 1985 Census of Tampa Florida. Journal of the American Statistical Society 84(406), 414–420 (1989)Google Scholar
  8. 8.
    Knuth, D.E.: The Art of Computer Programming: Sorting and Searching, vol. 3, pp. 394–395. Addison-Wesley, Reading (1973)Google Scholar
  9. 9.
    van der Sluijs, K., Houben, G.-J.: A Generic Component for Exchanging User Models between Web-based Systems. International Journal of Continuing Engineering Education and Life-Long Learning (IJCEELL), Inderscience 16(1/2), 64–76 (2006)CrossRefGoogle Scholar
  10. 10.
    Schraefel, M.M.C., Smith, D.A., Owens, A., Russell, A., Harris, C., Wilson, M.L.: The evolving mSpace platform: leveraging the semantic web on the trail of the memex. In: Proceedings of the sixteenth ACM conference on Hypertext and hypermedia, pp. 174–183. ACM, New York (2005)CrossRefGoogle Scholar
  11. 11.
    Hildebrand, M., van Ossenbruggen, J., Hardman, L.: /facet: A Browser for Heterogeneous Semantic Web Repositories. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 272–285. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Brugman, H., Malaisé, V., Gazendam, L.: A Web Based General Thesaurus Browser to Support Indexing of Television and Radio Programs. In: Proceedings of the 5th international conference on Language Resources and Evaluation, LREC 2006 (2006)Google Scholar
  13. 13.
    Wartena, C., Brussee, R.: Topic detection by clustering keywords. In: DEXA Workshops. IEEE Computer Society, Los Alamitos (2008)Google Scholar
  14. 14.
    Melenhorst, M., Grootveld, M., van Setten, M., Veenstra, M.: Tag-based information retrieval of video content. In: Proceeding of the 1st international conference on Designing interactive user experiences for TV and video, Silicon Valley, California, USA, pp. 31–40Google Scholar
  15. 15.
    Mäkelä, E., Hyvönen, E., Saarela, S.: Ontogator - A Semantic View-Based Search Engine Service for Web Applications. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 847–860. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Kees van der Sluijs
    • 1
  • Geert-Jan Houben
    • 1
    • 2
  1. 1.Technische Universiteit EindhovenEindhovenThe Netherlands
  2. 2.Technische Universiteit DelftDelftThe Netherlands

Personalised recommendations