Advertisement

Illumination Compensation for Document Images Using Local-Global Block Analysis

  • Mohd. Hafrizal Azmi
  • M. Iqbal Saripan
  • Raja Syamsul Azmir
  • Raja Abdullah
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5857)

Abstract

This paper presents the illumination compensation technique for document images using local-global block analysis. Imbalance illumination will affect the performance of classification and segmentation process because the darker regions conceal the information of the image. This method will split the image into non-overlapped blocks, and utilize the information within the local and global area of the image. The output images were binarized with simple global thresholding technique and the result shows that the output image is comparable in quality with the existed method. A comparative result will be presented with other document binarization methods.

Keywords

Illumination compensation local-global block analysis OCR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kasturi, R., O’Gorman, L., Govindaraju, V.: Document Image Analysis: A Primer. Sadhana 27, Part 1, 3–22 (2002)CrossRefGoogle Scholar
  2. 2.
    Saripan, M.I., Azmi, M.H., Raja Abdullah, R.S.A., Anuar, L.H.: Illumination Compensation in Pig Skin Texture Using Local-global Block Analysis. Journal of Modern Applied Science 3(2), 89–93 (2009)Google Scholar
  3. 3.
    de Mello, C.A.B., Lins, R.D.: A Comparative Study on OCR Tools. In: Vision Interface 1999, Trois-Rivieres, Canada, pp. 224–232 (1999)Google Scholar
  4. 4.
    Lu, S., Tan, C.L.: Binarization of Badly Illuminated Document Images through Shading Estimation and Compensation. In: ICDAR, pp. 312–316 (2007)Google Scholar
  5. 5.
    Feng, M.-L., Tan, Y.-P.: Contrast adaptive binarization of low quality document images. IEICE Electronic Express 1(16), 501–506 (2004)CrossRefGoogle Scholar
  6. 6.
    Niblack, W.: An Introdution to Digital Image Processing, pp. 115–116. Prentice Hall, Englewood Cliffs (1986)Google Scholar
  7. 7.
    Sauvola, J., Pietikainen, M.: Adaptive Document Image Binarization. Pattern Recognition 33, 225–235 (2000)CrossRefGoogle Scholar
  8. 8.
    Wolf, C., Jolion, J.-M.: Extraction and Recognition of Artificial Text in Multimedia Documents. Pattern Analysis Applications 6(4), 309–326 (2004)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Mohd. Hafrizal Azmi
    • 1
  • M. Iqbal Saripan
    • 1
  • Raja Syamsul Azmir
    • 1
  • Raja Abdullah
    • 1
  1. 1.Department of Computer & Communication Systems Engineering, Faculty of EngineeringUniversiti Putra MalaysiaSerdangMalaysia

Personalised recommendations