Hierarchical Approach for Fast and Efficient Collision Detection in Urban Simulation

  • Hamzah Asyrani Sulaiman
  • Abdullah Bade
  • Daut Daman
  • Norhaida Mohd. Suaib
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5857)

Abstract

Urban simulation research has become an important research area in computer graphics due to the need to visualize urban environment as realistic as possible. Urban environment consists of elements such as culling, lighting, shadows, collision detection and others that will determine the realism level of simulation. One of the key components that need further consideration is to equip the synthetic world with fast and efficient collision detection approach so that urban simulation can be done realistically. In general, hierarchical approach provides fast and efficient collision detection method in urban simulation. We present a new traversal algorithm of Bounding-Volume Hierarchies (BVH) for collision detection (CD) between static and moving object that can be used in urban simulation. The result from the experiments had shown that the combination of the AABB BVH and optimized traversal algorithm is superior over the previous BVH approaches where less time taken to detect collision between static and moving objects in urban simulation.

Keywords

Hierarchical Approach Bounding-Volume Bounding-Volume Hierarchies Collision Detection Large-Scale Simulation Urban Simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kockara, S., Halic, T., Iqbal, K., Bayrak, C., Rowe, R.: Collision detection: A survey. In: IEEE International Conference on Systems, Man and Cybernetics, 2007. ISIC 2007, pp. 4046–4051 (2007)Google Scholar
  2. 2.
    Lin, M.C., Manocha, D.: Collision and Proximity Query. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, 2nd edn., ch. 35, pp. 787–807. CRC Press, Boca Raton (2004)Google Scholar
  3. 3.
    Bradshaw, G., O’sullivan, C.: Adaptive Medial-axis Approximation for Sphere-Tree Construction. ACM Transactions on Graphics 23(1), 1–26 (2004)CrossRefGoogle Scholar
  4. 4.
    Hubbard, P.M.: Collision detection for interactive graphics applications. PhD thesis, Brown University (1995)Google Scholar
  5. 5.
    Hubbard, P.M.: Approximating polyhedra with spheres for time-critical collision detection. ACM Transactions on Graphics 15(3), 179–210 (1996)CrossRefGoogle Scholar
  6. 6.
    Quinlan, S.: Efficient distance computation between nonconvex object. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 3324–3329. IEEE Press, Los Alamitos (1994)Google Scholar
  7. 7.
    Spillmann, J., Becker, M., Teschner, M.: Efficient updates of bounding sphere hierarchies for geometrically deformable models. J. Vis. Comun. Image Represent. 18(2), 101–108 (2007)CrossRefGoogle Scholar
  8. 8.
    Mezger, J., Kimmerle, S., Etzmuss, O.: Hierarchical Techniques in Collision Detection for Cloth Animation. Journal of WSCG 11(2), 322–329 (2003)Google Scholar
  9. 9.
    Liu, S., Wang, C.C., Hui, K., Jin, X., Zhao, H.: Ellipsoid-tree construction for solid objects. In: Proceedings of the 2007 ACM Symposium on Solid and Physical Modeling, SPM 2007, Beijing, China, pp. 303–30. ACM, New York (2007)Google Scholar
  10. 10.
    Zhang, X., Kim, Y.J.: Interactive Collision Detection for Deformable Models Using Streaming AABBs. IEEE Transactions on Visualization and Computer Graphics 13(2), 318–329 (2007)CrossRefGoogle Scholar
  11. 11.
    van den Bergen, G.: Efficient collision detection of complex deformable models using AABB trees. Journal of Graphics Tools 4(2), 1–13 (1997)Google Scholar
  12. 12.
    Cohen, J.D., Manocha, D., Lin, M.C., Ponamgi, M.K.: Interactive and exact collision detection for large-scale environments. Technical Report TR94-005, University of North Carolina at Chapel Hill, Computer Science Department (1994)Google Scholar
  13. 13.
    Gottschalk, S., Lin, M., Manocha, D.: OBB-Tree: A Hierarchical Structure for Rapid Interference Detection. In: ACM SIGGRAPH, pp. 171–180 (1996)Google Scholar
  14. 14.
    Benitez, A., del Carmen Ramirez, M., Vallejo, D.: Collision Detection Using Sphere-Tree Construction. In: Proceedings of the15th International Conference on Electronics, Communications and Computer. CONIELECOMP, pp. 286–291 (2005)Google Scholar
  15. 15.
    Klosowski, M., Held, J., Mitchell, S.B., Zikan, K., Sowizral, H.: Efficient collision detection using bounding-volume hierarchies of k-DOPs. IEEE Trans. Visualizat. Comput. Graph. 4(1), 21–36 (1998)CrossRefGoogle Scholar
  16. 16.
    Musse, S.R., Thalmann, D.: A Model of Human Crowd Behavior: Group Inter-Relationship and Collision Detection Analysis. In: Proc. Workshop Computer Animation and Simulation of Eurographics 1997 (September 1997)Google Scholar
  17. 17.
    Loscos, C., Marchal, D., Meyer, A.: Intuitive Crowd Behaviour in Dense Urban Environments using Local Laws. In: Proc. Theory and Practice of Computer Graphics 2003. IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  18. 18.
    Feurtey, F.: Simulating the Collision Avoidance Behavior of Pedestrians, Master thesis, The University of Tokyo, School of Engeenering (2000)Google Scholar
  19. 19.
    Aliaga, D., Cohen, J., Wilson, A., Zhang, H., Erikson, C., Hoff, K., Hudson, T., Stuerzlinger, W., Baker, E., Bastos, R., Whitton, M., Brooks, F., Manocha, D.: A Framework for the Real-Time Walkthrough of Massive Models. Technical Report. UMI Order Number: TR98-013., University of North Carolina at Chapel Hill (1998)Google Scholar
  20. 20.
    Farenc, N., Boulic, R., Thalmann, D.: An Informed Environment Dedicated to the Simulation of Virtual Humans in Urban Context. Computer Graphics Forum 18(3), 309–318 (2000)CrossRefGoogle Scholar
  21. 21.
    Tecchia, F., Chrysanthou, Y.: Real-time Visualisation of Densely Populated Urban Environments: a Simple and Fast Algorithm for Collision Detection. In: Eurographics UK 2000, Swansee (April 2000)Google Scholar
  22. 22.
    Hamill, J., O’Sullivan, C.: Virtual dublin - a framework for real-time urban simulation. Journal of WSCG 11, 221–225 (2003)Google Scholar
  23. 23.
    Möller, T., Trumbore, B.: Fast, minimum storage ray-triangle intersection. J. Graph. Tools 2(1), 21–28 (1997)Google Scholar
  24. 24.
    Nurminen, A.: m-LOMA - a mobile 3D city map. In: Proceedings of the Eleventh international Conference on 3D Web Technology (Web3D 2006), Columbia, Maryland, pp. 7–18. ACM, New York (2006)CrossRefGoogle Scholar
  25. 25.
    Weghorst, H., Hooper, G., Greenberg, D.: Improved computational methods for ray tracing. ACM Transactions on Graphics, 52–69 (1984)Google Scholar
  26. 26.
    Bade, et al.: Oriented convex polyhedra for collision detection in 3D computer animation. In: Proceedings of the 4th international Conference on Computer Graphics and interactive Techniques in Australasia and Southeast Asia, Kuala Lumpur, Malaysia, November 29 - December 02, 2006, pp. 127–193. ACM, New York (2006)Google Scholar
  27. 27.
    Somchaipeng, K., Erleben, K., Sporring, J.: A Multi-Scale Singularity Bounding-volume Hierarchy. In: Proceedings of WSCG, pp. 179–186 (2005)Google Scholar
  28. 28.
    Luiz Gonzaga da, S., Soraia Raupp, M.: Real-time generation of populated virtual cities. In: Proceedings of the ACM symposium on Virtual reality software and technology, ACM, Limassol (2006)Google Scholar
  29. 29.
    An, N.: Implicit bounding volumes and bounding volume hierarchies, p. 98. Stanford University (2006)Google Scholar
  30. 30.
    Erikson, C.: Real-Time Collision Detection. Elsevier Inc., Amsterdam (2005)Google Scholar
  31. 31.
    Xiaoping, L., et al.: Kernel-Based Cellular Automata for Urban Simulation. In: Proceedings of the Third International Conference on Natural Computation, vol. 03, IEEE Computer Society Press, Los Alamitos (2007)Google Scholar
  32. 32.
    Larrson, T.: PhD Thesis, Adaptive Bounding Volume Hierarchies for Efficient Collision Queries, Mälardalen University (January 2009)Google Scholar
  33. 33.
    Sulaiman, H.A., Bade, A., Daman, D., Sunar, M.S.: Bounding-volume hierarchies for detecting interference in urban simulation. In: Proc. of Computer Games & Allied Technology in Animation, Multimedia, IPTV & Entertainment, Singapore, pp. 96–102 (April 28-30, 2008)Google Scholar
  34. 34.
    Sulaiman, H.A., Bade, A., Daman, D., Sunar, M.S.: The framework of bounding-volume hierarchies for detecting interference in urban simulation. In: The 4th International Conference on Information & Communication Technology and Systems, August 5, 2008, pp. 261–266. Institut Teknologi Sepuluh Nopember (ITS), Surabaya (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Hamzah Asyrani Sulaiman
    • 1
  • Abdullah Bade
    • 1
  • Daut Daman
    • 1
  • Norhaida Mohd. Suaib
    • 1
  1. 1.Department of Computer Graphics and Multimedia, Faculty of Computer Science and Information SystemUniversiti Teknologi MalaysiaSkudaiMalaysia

Personalised recommendations