Advertisement

Using Wavelet Extraction for Haptic Texture Classification

  • Waskito Adi
  • Suziah Sulaiman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5857)

Abstract

While visual texture classification is a widely-research topic in image analysis, little is known on its counterpart i.e. the haptic (touch) texture. This paper examines the visual texture classification in order to investigate how well it could be used for haptic texture search engine. In classifying the visual textures, feature extraction for a given image involving wavelet decomposition is used to obtain the transformation coefficients. Feature vectors are formed using energy signature from each wavelet sub-band coefficient. We conducted an experiment to investigate the extent in which wavelet decomposition could be used in haptic texture search engine. The experimental result, based on different testing data, shows that feature extraction using wavelet decomposition achieve accuracy rate more than 96%. This demonstrates that wavelet decomposition and energy signature is effective in extracting information from a visual texture. Based on this finding, we discuss on the suitability of wavelet decomposition for haptic texture searching, in terms of extracting information from image and haptic information.

Keywords

Texture recognition supervised learning machine learning haptic texture search engine wavelet decomposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Datta, R.: Image Retrieval: Ideas, Influences, and Trends of New Age. ACM Computing surveys 40(2),Article 5 (April 2008)Google Scholar
  2. 2.
    Conners, R.W., Harlow, C.A.: A Theoretical Comparison of Texture Algorithms. IEEE Trans. Pattern Analysis and Machine Intelligence 2, 204–222 (1980)zbMATHCrossRefGoogle Scholar
  3. 3.
    Azencott, R.: Texture classification using windowed Fourier filters. IEEE Trans. Pattern Analysis and Machine Intelligence 19, 148–153 (1997)CrossRefGoogle Scholar
  4. 4.
    Fountain, S.R.: Rotation invariant texture features from Gabor filters. In: Chin, R., Pong, T.-C. (eds.) ACCV 1998. LNCS, vol. 1352. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  5. 5.
    Nikam, S.B., Agarwal, S.,: Wavelet energy signature and GLCM features-based fingerprint anti-spoofing. In: International Conference on Wavelet Analysis and Pattern Recognition, ICWAPR 2008 (2008)Google Scholar
  6. 6.
    Pun, C.: Log-Polar Wavelet Energy Signatures for Rotation and Scale Invariant Texture Classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(5) (May 2003)Google Scholar
  7. 7.
    Shi, M.,: Hyperspectral Texture Recognition Using a Multiscale Opponent Representation. IEEE Transaction on Geoscience and Remote Sensing 41(5) (May 2003)Google Scholar
  8. 8.
    Yektaii, M., Bhattacharya, P.: Cumulative global distance for dimension reduction in handwritten digits database. In: Qiu, G., Leung, C., Xue, X.-Y., Laurini, R. (eds.) VISUAL 2007. LNCS, vol. 4781, pp. 216–222. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Mallat, S.: A theory for Multiresolution Signal Decomposition: The Wavelet Representation. IEEE Trans. on Pattern Analysis and Machine Inteligence 11(7), 674–693 (1989)zbMATHCrossRefGoogle Scholar
  10. 10.
    Daubechies, I.: Orthonormal Bases of Compactly Supported Wavelets. Comm. Pure and Applied Math. 41, 909–996 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Cédric, V.: Generalized Daubechies Wavelet Families. IEEE Transactions on Signal Processing 55(9) (September 2007)Google Scholar
  12. 12.
    Farrell Michael, D.: On The Impact of PCA Dimmension Reduction for Hyperspectral Detection of Difficult Targets. IEEE Transaction on Geoscience and Remote Sensing Letters 2(2) (April 2005)Google Scholar
  13. 13.
    Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality Reduction by Learning an nvariant Mapping. In: IEEE Conf. Comp. Vision and Pattern Recog., pp. 1735–1742. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  14. 14.
    Wall, S.: An Investigation of Temporal and Spatial Limitation of Haptic Interfaces. University of Glasgow (2004)Google Scholar
  15. 15.
    Klatzky, R.L., Lederman, S.J., Touch, I.A.F., Healy, R.W. (eds.): Experimental Psychology. In: Weiner, I.B. (ed.) Handbook of Psychology, vol. 4, Wiley, New York (2004)Google Scholar
  16. 16.
    Seungmoon, C., Tan, H.Z.: An Analysis of Perceptual Instability During Haptic Texture Rendering. In: 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (2002)Google Scholar
  17. 17.
    Wu, J., Song, A., Zou, C.: A Novel Haptic Texture Display Based on Image Processing. In: IEEE International Conference on Robotics and Biomimetics (December 2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Waskito Adi
    • 1
  • Suziah Sulaiman
    • 1
  1. 1.Computer Science DepartmentUniversiti Teknologi PETRONASTronohMalaysia

Personalised recommendations