Testing Timed Finite State Machines with Guaranteed Fault Coverage

  • Khaled El-Fakih
  • Nina Yevtushenko
  • Hacene Fouchal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5826)

Abstract

A method is presented for deriving test suites with the guaranteed fault coverage for deterministic possibly partial Timed Finite State Machines (TFSMs). TFSMs have integer boundaries for time guards and the time reset operation at every transition; for TFSM implementations the upper bound on the number of states is known as well as the largest finite boundary and the smallest duration of time guards. We consider two fault models and present corresponding techniques for deriving complete test suites. In the first fault model inputs can be applied at integer time instances while in the second fault model time instances can be rational. The derivation method for integer time instances is extended to the case when the number of states of an implementation under test can be larger than the number of states of the given specification.

References

  1. 1.
    Alur, R., Dill, D.L.: A Theory of Timed automata. Theoretical Computer Science 126(2), 183–235 (1994)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bochmann, G.v., Petrenko, A.: Protocol Testing: Review of Methods and Relevance for Software Testing. In: International Symposium on Software Testing and Analysis, Seattle, pp. 109–123 (1994)Google Scholar
  3. 3.
    Chow, T.S.: Test Design Modeled by Finite-state Machines. IEEE TSE 4(3), 178–187 (1978)MATHGoogle Scholar
  4. 4.
    Dorofeeva, R., El-Fakih, K., Yevtushenko, N.: An Improved Conformance Testing Method. In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 204–218. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    En-Nouaary, A., Dssouli, R., Khendek, F.: Timed Wp-Method: Testing Real-Time Systems. IEEE TSE 28(11), 1023–1038 (2002)Google Scholar
  6. 6.
    Fujiwara, S., Bochmann, G.v., Khendek, F., Amalou, M., Ghedamsi, A.: Test Selection Based on Finite State Models. IEEE Trans. SE 17(6), 591–603 (1991)CrossRefGoogle Scholar
  7. 7.
    Gromov, M., El-Fakih, K., Shabaldina, N., Yevtushenko, N.: Distinguishing Non-deterministic Timed Finite State Machines. In: 11th Formal Methods for Open Object-Based Distributed Systems and 29th Formal Techniques for Networked and Distributed Systems, FMOODS/FORTE. LNCS, vol. 5522, pp. 137–151. Springer, Heidelberg (2009)Google Scholar
  8. 8.
    Hierons, R.M., Merayo, M.G., Nunez: Testing from a Stochastic Timed System with a Fault Model. Journal of Logic and Algebraic Programming 72(8), 98–115 (2009)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Lee, D., Yannakakis, M.: Principles and Methods of Testing Finite State Machines-A Survey. Proc. of the IEEE 84(8), 1090–1123 (1996)CrossRefGoogle Scholar
  10. 10.
    Merayo, M.G., Nunez, M., Rodriguez, I.: Formal Testing from Timed Finite State Machines. Computer Networks 52(2), 432–460 (2008)CrossRefMATHGoogle Scholar
  11. 11.
    Petrenko, A.: Checking Experiments with Protocol Machines. In: Proc. 4th Int. Workshop on Protocol Test Systems (IWPTS), pp. 83–94 (1991)Google Scholar
  12. 12.
    Petrenko, A., Yevtushenko, N.: Testing from Partial Deterministic FSM Specifications. IEEE Trans. Computers 54(9), 1154–1165 (2005)CrossRefGoogle Scholar
  13. 13.
    Petrenko, A., Yevtushenko, N., Lebedev, A., Das, A.: Nondeterministic State Machines in Protocol Conformance Testing. In: Proc. of the IFIP 6th IWPTS, France, pp. 363–378 (1993)Google Scholar
  14. 14.
    Springintveld, J., Vaandrager, F., D’Argenio, P.: Testing Timed Automata. Theoretical Computer Science 254(1-2), 225–257 (2001)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Vasilevskii, M.P.: Failure Diagnosis of Automata. translated from Kibernetika 4, 98–108 (1973)MathSciNetGoogle Scholar
  16. 16.
    Yevtushenko, N., Petrenko, A.: Test derivation method for an arbitrary deterministic automaton. In: Automatic Control and Computer Science, vol. 5. Allerton Press Inc., USA (1990)Google Scholar
  17. 17.
    Yannakakis, M., Lee, D.: Testing Finite State Machines: Fault Detection. Journal of Computer and System Sciences 50, 209–227 (1995)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Cardell-Oliver, R., Glover, T.: A Practical and Complete Algorithm for Testing Real-Time Systems. Formal Techniques for Real-Time Fault Tolerant Systems (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Khaled El-Fakih
    • 1
  • Nina Yevtushenko
    • 2
  • Hacene Fouchal
    • 3
  1. 1.American University of SharjahUAE
  2. 2.Tomsk State UniversityRussia
  3. 3.Univ. Antilles GuyaneGuadeloupeFrance

Personalised recommendations