A Cognitive Mechanism for Rate Adaptation in Wireless Networks

  • Luciano Chaves
  • Neumar Malheiros
  • Edmundo Madeira
  • Islene Garcia
  • Dzmitry Kliazovich
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5844)


Sophisticated wireless interfaces support multiple transmission data rates and the selection of the optimal data rate has a critical impact on the overall network performance. Proper rate adaptation requires dynamically adjusting data rate based on current channel conditions. Despite several rate adaptation algorithms have been proposed in the literature, there are still challenging issues related to this problem. The main limitations of current solutions are concerned with how to estimate channel quality to appropriately adjust the rate. In this context, we propose a Cognitive Rate Adaptation mechanism for wireless networks. This mechanism includes a distributed self-configuration algorithm in which the selection of data rate is based on past experience. The proposed approach can react to changes in channel conditions and converge to the optimal data rate, while allowing a fair channel usage among network nodes. Simulation results obtained underline performance benefits with respect to existing rate adaptation algorithms.


Wireless Networks Rate Adaptation Self-configuration Self-optimization Cognitive Algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ancillotti, E., Bruno, R., Conti, M.: Experimentation and Performance Evaluation of Rate Adaptation Algorithms in Wireless Mesh Networks. In: PE-WASUN 2008: Proc. of the 5th ACM Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks, pp. 7–14. ACM Press, New York (2008)CrossRefGoogle Scholar
  2. 2.
    Haratcherev, I., Langendoen, K., Lagendijk, R., Sips, H.: Hybrid Rate Control for IEEE 802.11. In: MobiWac 2004: Proc. of the 2nd International Workshop on Mobility Management and Wireless Access Protocols, pp. 10–18. ACM Press, New York (2004)CrossRefGoogle Scholar
  3. 3.
    Bicket, J.: Bit-rate Selection in Wireless Networks. Master’s thesis, Massachusetts Institute of Technology (MIT), Department of Electrical Engineering and Computer Science (February 2005)Google Scholar
  4. 4.
    Xia, Q., Hamdi, M.: Smart Sender: A Practical Rate Adaptation Algorithm for Multirate IEEE 802.11 WLANs. IEEE Transactions on Wireless Communications 7(5), 1764–1775 (2008)CrossRefGoogle Scholar
  5. 5.
    Kamerman, A., Monteban, L.: WaveLAN-II: A High-Performance Wireless LAN for the Unlicensed Band. Bell Labs Technical Journal 2(3), 118–133 (1997)CrossRefGoogle Scholar
  6. 6.
    Lacage, M., Manshaei, M., Turletti, T.: IEEE 802.11 Rate Adaptation: A Practical Approach. In: MSWiM 2004: Proc. of the 7th International Symposium on Modeling, Analysis and Simulation of Wireless and Mobile Systems, pp. 126–134. ACM Press, New York (2004)CrossRefGoogle Scholar
  7. 7.
    Kim, J., Kim, S., Choi, S., Qiao, D.: CARA: Collision-Aware Rate Adaptation for IEEE 802.11 WLANs. In: INFOCOM 2006: Proc. of the 25th International Conference on Computer Communications, pp. 1–11. IEEE Computer Society Press, Washington (2006)Google Scholar
  8. 8.
    Holland, G., Vaidya, N., Bahl, P.: A Rate-Adaptive MAC Protocol for Multi-Hop Wireless Networks. In: MobiCom 2001: Proc. of the 7th International Conference on Mobile Computing and Networking, pp. 236–251. ACM Press, New York (2001)CrossRefGoogle Scholar
  9. 9.
    Khan, S., Mahmud, S., Loo, K., Al-Raweshidy, H.: A cross layer rate adaptation solution for IEEE 802.11 networks. Computer Communications 31(8), 1638–1652 (2008)CrossRefGoogle Scholar
  10. 10.
    Heusse, M., Rousseau, F., Berger-Sabbatel, G., Duda, A.: Performance Anomaly of 802.11b. In: INFOCOM 2003: Proc. of the 22th International Conference on Computer Communications, vol. 2, pp. 836–843. IEEE Computer Society Press, Washington (2003)Google Scholar
  11. 11.
    Thomas, R.W., Friend, D.H., Dasilva, L.A., Mackenzie, A.B.: Cognitive networks: adaptation and learning to achieve end-to-end performance objectives. IEEE Communications Magazine 44(12), 51–57 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Luciano Chaves
    • 1
  • Neumar Malheiros
    • 1
  • Edmundo Madeira
    • 1
  • Islene Garcia
    • 1
  • Dzmitry Kliazovich
    • 2
  1. 1.Institute of ComputingUniversity of CampinasCampinasBrazil
  2. 2.DISIUniversity of TrentoTrentoItaly

Personalised recommendations