Rule-Based Event Processing and Reaction Rules

  • Adrian Paschke
  • Alexander Kozlenkov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5858)


Reaction rules and event processing technologies play a key role in making business and IT / Internet infrastructures more agile and active. While event processing is concerned with detecting events from large event clouds or streams in almost real-time, reaction rules are concerned with the invocation of actions in response to events and actionable situations. They state the conditions under which actions must be taken. In the last decades various reaction rule and event processing approaches have been developed, which for the most part have been advanced separately. In this paper we survey reaction rule approaches and rule-based event processing systems and languages.


Active Rule Computation Tree Logic Situation Calculus Active Database Reaction Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Erikson, J.: CEDE: Composite Event Detector in An Active Database, University of Skövde (1993)Google Scholar
  2. 2.
    Meo, R., Psaila, G., Ceri, S.: Composite Events in Chimera. In: EDBT, Avingnon, France (1996)Google Scholar
  3. 3.
    Behrends, H.: A description of Event Based Activities in Database Related Information Systems, Report 3/1995, Univ. of Oldenburg (1995)Google Scholar
  4. 4.
    Gehani, N., Jagadish, H.V., Shmueli, O.: Event specification in an active object-oriented database. In: Int. Conf. on Management of Data, San Diego (1992)Google Scholar
  5. 5.
    Collet, C., Coupaye, T.: Composite Events in NAOS. In: Dexa, Zürich, Switzerland (1996)Google Scholar
  6. 6.
    Dayal, U., Buchmann, A., Chakravarty, S.: The HiPAC Project. In: Widom, J., Ceri, S. (eds.) Active Database Systems. Morgan Kaufmann, San Francisco (1996)Google Scholar
  7. 7.
    Adi, A., Opher, E.: Amit - the situation manager. VLDB Journal 13(2) (2004)Google Scholar
  8. 8.
    RuleCore (2006),
  9. 9.
    Cugola, G., Nitto, E.D., Fuggeta, A.: Exploiting an event-based infrastructure to develop complex distributed systems. In: Int. Conf. on Software Engineering (1998)Google Scholar
  10. 10.
    Paton, N., et al.: Formal Specification of Active Database Functionality: A Survey. In: Sellis, T.K. (ed.) RIDS 1995. LNCS, vol. 985, Springer, Heidelberg (1995)Google Scholar
  11. 11.
    Chakravarthy, S., et al.: Composite Events for Active Databases: Semantics Contexts and Detection. In: VLDB 1994 (1994)Google Scholar
  12. 12.
    Gatziu, S., Dittrich, K.: Event in an active object-oriented database system. In: Int. Conf. on Rules in Database Systems, Edinburgh (1993)Google Scholar
  13. 13.
    Aiken, A., Widom, J., Hellerstein, J.M.: Behaviour of database production rules: termination, confluence and observable determinism. In: Int. Conf. on Management of Data. ACM, New York (1994)Google Scholar
  14. 14.
    Baralis, E., Widom, J.: An algebraic approach to rule analysis by means of triggering and activation graphs. In: VLDB 1994 (1994)Google Scholar
  15. 15.
    Baley, J., et al.: Abstract interpretation of active rules and its use in termination analysis. In: Int. Conf. on Database Theory (1997)Google Scholar
  16. 16.
    Widom, J.: A denotational semantics for starbust production rule language. SIGMOD record 21(3), 4–9 (1992)CrossRefGoogle Scholar
  17. 17.
    Lausen, G., Ludascher, B., May, W.: On Logical Foundations of Active Databases. Logics for Databases and Information Systems, 389–422 (1998)Google Scholar
  18. 18.
    Zaniolo, C.: A unified semantics for Active Databases. In: Int. Workshop on Rules in Database Systems, Edinburgh, U.K (1993)Google Scholar
  19. 19.
    Dietrich, J., et al.: Rule-Based Agents for the Semantic Web. Journal on Electronic Commerce Research Applications (2003)Google Scholar
  20. 20.
    Hayes-Roth, F.: Rule based systems. ACM Computing Surveys 28(9) (1985)Google Scholar
  21. 21.
    Declambre, L.M.L., Etheredge, J.N.: A self-controlling interpreter for the relational production language. In: ACM SIGMOD Int. Conf. on the Management of Data (1988)Google Scholar
  22. 22.
    Sellis, T., Lin, C.C., Raschid, L.: Coupling production systems and database systems. In: ACM SIGMOND Int. Conf. on the Management of Data (1993)Google Scholar
  23. 23.
    Widom, J., Finkelstein, S.J.: Set-oriented production rules in relational database systems. In: ACM SIGMOND Int. Conf. on the Management of Data (1990)Google Scholar
  24. 24.
    Dung, P.M., Mancaralle, P.: Production Systems with Negation as Failure. IEEE Transactions on Knowledge and Data Engineering 14(2) (2002)Google Scholar
  25. 25.
    Raschid, L.: A semantics for a class of stratified production system programs. Univ. of Maryland Institute for Advanced Computer Studies-UMIACS-TR-91-114.1: College Park, MD, USA (1992)Google Scholar
  26. 26.
    Raschid, L., Lobo, J.: Semantics for Update Rule Programs and Implementation in a Relational Database Management System. ACM Transactions on Database Systems 22(4), 526–571 (1996)CrossRefGoogle Scholar
  27. 27.
    Bonner, A.J., Kifer, M.: Transaction logic programming (or a logic of declarative and procedural knowledge). University of Toronto (1995)Google Scholar
  28. 28.
    Baral, C., Lobo, J.: Formal characterization of active databases. In: Int. Workshop on Logic in Databases (1996)Google Scholar
  29. 29.
    Zaniolo, C.: Active Database Rules with Transaction-Conscious Stable-Model Semantics. In: Int. Conf. on Deductive and Object-Oriented Databases (1995)Google Scholar
  30. 30.
    Flesca, S., Greco, S.: Declarative semantics for active rules. In: Quirchmayr, G., Bench-Capon, T.J.M., Schweighofer, E. (eds.) DEXA 1998. LNCS, vol. 1460, p. 871. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  31. 31.
    Paschke, A.: ECA-LP: A Homogeneous Event-Condition-Action Logic Programming Language, Internet-based Information Systems, Technical University Munich (November 2005),
  32. 32.
    Paschke, A., Kiss, C., Al-Hunaty, S.: NPL: Negotiation Pattern Language - A Design Pattern Language for Decentralized Coordination and Negotiation Protocols. In: e-Negotiations. ICFAI University Press, New Deli (2006),
  33. 33.
    Ogle, D., et al.: The Common Base Event, IBM (2003)Google Scholar
  34. 34.
    Sandewall, E.: Combining Logic and Differential Equations for Describing Real World Systems. In: KR 1989. Morgan Kaufmann, San Francisco (1989)Google Scholar
  35. 35.
    Kowalski, R.A., Sergot, M.J.: A logic-based calculus of events. New Generation Computing 4, 67–95 (1986)CrossRefGoogle Scholar
  36. 36.
    Hayes, P., McCarthy, J.: Some philosophical problems from the standpoint of artificial intelligence. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence 4. Edinburgh University Press, Edinburgh (1969)Google Scholar
  37. 37.
    Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamic Systems. MIT Press, Camebridge (2001)Google Scholar
  38. 38.
    Gelfond, M., Lifschitz, V.: Representing action and change by logic programs. Journal of Logic Programming 17(2-4), 301–321 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Fikes, R.E., Nilsson, N.J.: STRIPS: A new approach to the application of theorem proving to problem solving. Artificial Intelligence, 1971(2), 189–208Google Scholar
  40. 40.
    Giunchiglia, E., Lifschitz, V.: An action language based on causal explanation: Preliminary report. In: Conf. on Innovative Applications of Artificial Intelligence. AAAI Press, Menlo Park (1998)Google Scholar
  41. 41.
    Giunchiglia, E., Lifschitz, V.: Action languages, temporal action logics and the situation calculus. Linköping Electronic Articles in Computer and Information Science 4(040) (1999)Google Scholar
  42. 42.
    Doherty, P., et al.: TAL: Temporal Action Logics language specification and tutorial. Linköping Electronic Articles in Computer and Information Science 3(015) (1998)Google Scholar
  43. 43.
    Hölldobler, S., Schneeberger, J.: A new deductive approach to planning. New Generation Computing 8(3), 225–244 (1990)zbMATHCrossRefGoogle Scholar
  44. 44.
    Thielscher, M.: From situation calculus to fluent calculus: State update axioms as a solution to the inferential frame problem. Artificial Intelligence 111, 277–299 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Bennett, B., Galton, A.P.: A unifying semantics for time and events. Artificial Intelligence 153(1-2), 13–48 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Saraswat, V., Jagadeesan, R., Gupta, V.: Timed default concurrency constraint programming. Journal of Symbolic Computation 22(5/6) (1996)Google Scholar
  47. 47.
    Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)zbMATHGoogle Scholar
  48. 48.
    Hoare, C.A.R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1985)Google Scholar
  49. 49.
    Meolic, R., Kapus, T., Brezonic, Z.: Verification of concurent systems using ACTL. In: IASTED Int. Conf. on Applied Informatics (AI 2000), Anaheim, Calgary. IASTED/ACTA Press (2000)Google Scholar
  50. 50.
    Meolic, R., Kapus, T., Brezonic, Z.: An Action Computation Tree Logic With Unless Operator. In: Proc. of South-East European Workshop on Formal Methods (SEEFM 2003), Thessaloniki, Greece (2003)Google Scholar
  51. 51.
    Ludäscher, B., Hamann, U., Lausen, G.: A logical framework for active rules. In: Int. Conf. on Management of Data, Pune, India (1995)Google Scholar
  52. 52.
    Naqvi, S., Krishnamurthy, R.: Database updates in logic programming. In: ACM Symposium on Principles of Database Systems. ACM, New York (1988)Google Scholar
  53. 53.
    Abiteboul, S., Vianu, V.: Datalog extensions for database queries and updates. Journal of Computer and System Science 43, 62–124 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  54. 54.
    Leite, J.A., Alferes, J.J., Moniz Pereira, L.: On the use of multi-dimensional dynamic logic programming to represent societal agents’ viewpoints. In: Brazdil, P.B., Jorge, A.M. (eds.) EPIA 2001. LNCS (LNAI), vol. 2258, p. 276. Springer, Heidelberg (2001)Google Scholar
  55. 55.
    Alferes, J.J., Brogi, A., Leite, J., Moniz Pereira, L.: Evolving logic programs. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, p. 50. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  56. 56.
    Eiter, T., et al.: A framework for declarative update specification in logic programs. In: IJCAI (2001)Google Scholar
  57. 57.
    Leite, J.A.: Evolving Knowledge Bases. Frontiers in Artificial Intelligence and Applications 81 (2003)Google Scholar
  58. 58.
    Paschke, A.: ECA-RuleML: An Approach combining ECA Rules with temporal interval-based KR Event/Action Logics and Transactional Update Logics, IBIS, Technische Universität München, Technical Report, 11/2005 (2005)Google Scholar
  59. 59.
    Ludascher, B.: Integration of Active and Deductive Database Rules, Phd thesis, in Institut für Informatik, Universität Freiburg, Germany (1998)Google Scholar
  60. 60.
    McCarthy, J., Hayes, P.: Some philosophical problems from the standpoint of artificial intelligence. Machine Intelligence 4, 463–502 (1969)zbMATHGoogle Scholar
  61. 61.
    Reiter, R.: On specifying database updates. Journal of Logic Programming 25(1), 53–91 (1995)zbMATHCrossRefGoogle Scholar
  62. 62.
    Paschke, A., Bichler, M.: SLA Representation, Management and Enforcement - Combining Event Calculus, Deontic Logic, Horn Logic and Event Condition Action Rules. In: EEE 2005, Hong Kong, China (2005)Google Scholar
  63. 63.
    May, W.: XPath-Logic and XPathLog: A logic-programming style XML data manipulation language. Theory and Practice of Logic Programming 4(3) (2004)Google Scholar
  64. 64.
    Initiative, X.D.: XUpdate - XML Update Language (2000),,
  65. 65.
    Liu, M., Lu, L., Wang, G.: A Declarative XML-RL Update Language. In: Song, I.-Y., Liddle, S.W., Ling, T.-W., Scheuermann, P. (eds.) ER 2003. LNCS, vol. 2813, pp. 506–519. Springer, Heidelberg (2003)Google Scholar
  66. 66.
    Tatarinov, I., et al.: Updating XML. ACM SIGMOD, 133–154 (2001)Google Scholar
  67. 67.
    Abiteboul, S., et al.: Active XML: Peer-to-Peer Data and Web Services Integration. In: VLDB (2002)Google Scholar
  68. 68.
    Bonifati, A., Ceri, S., Paraboschi, S.: Pushing Reactive Services to XML Repositories Using Active Rules. In: WWW 2001 (2001)Google Scholar
  69. 69.
    Bonifati, A., et al.: Active XQuery. In: Int. Conf. on Data Engineering, ICDE (2002)Google Scholar
  70. 70.
    Bailey, J., Poulovassilis, A., Wood, P.T.: An Event-Condition-Action Language for XML. In: WWW 2002 (2002)Google Scholar
  71. 71.
    Papamarkos, G., Poulovassilism, A., Wood, P.T.: RDFTL: An Event-Condition-Action Rule Language for RDF. In: Hellenic Data Management Symposium (HDMS 2004)Google Scholar
  72. 72.
    Bry, F., Patranjan, P.L.: Reactivity on the Web: Paradigms and Applications of the Language XChange. In: ACM Symp. Applied Computing (2005)Google Scholar
  73. 73.
    Schaert, S.: A Rule-Based Query and Transformation Language for the Web, Phd thesis, in Institute for Informatics, University of Munich (2004)Google Scholar
  74. 74.
    TIBCO Business Events 3.0, (accessed August 2009)
  75. 75.
    jBoss Drools, (accessed August 2009)
  76. 76.
    Paton, N.W., D__az, O.: Active database systems. In: ACM Comput. Surv. ACM Press, New York (1989)Google Scholar
  77. 77.
    Galton, A., Augusto, J.C.: Two approaches to event definition. In: Hameurlain, A., Cicchetti, R., Traunmüller, R. (eds.) DEXA 2002. LNCS, vol. 2453, pp. 547–556. Springer, Heidelberg (2002)Google Scholar
  78. 78.
    Adaikkalavan, R., Chakravarthy, S.: Snoopib: Interval-based event specification and detection for active databases. Data Knowl. Eng. 59(1), 139–165 (2006)CrossRefGoogle Scholar
  79. 79.
    Paschke, A.: Eca-lp / eca-ruleml: A homogeneous event-condition-action logic programming language. CoRR, abs/cs/0609143 (2006)Google Scholar
  80. 80.
    Paschke, A.: Eca-ruleml: An approach combining eca rules with temporal interval-based kr event/action logics and transactional update logics. CoRR, abs/cs/0610167 (2006)Google Scholar
  81. 81.
    Paschke, A.: A homogenous reaction rule language for complex event processing. In: Proc. 2nd International Workshop on Event Drive Architecture and Event Processing Systems, EDA-PS (2007)Google Scholar
  82. 82.
    Paschke, A.: Eca-lp / eca-ruleml: A homogeneous event-condition-action logic programming language. In: RuleML 2006, Athens, Georgia, USA (2006)Google Scholar
  83. 83.
    Paschke, A.: Rule-Based Service Level Agreements - Knowledge Representation for Automated e-Contract, SLA and Policy Management. In: IDEA, Munich (2007)Google Scholar
  84. 84.
    Paschke, A., Bichler, M.: Knowledge representation concepts for automated sla management. Decis. Support Syst. 46(1), 187–205 (2008)CrossRefGoogle Scholar
  85. 85.
    Chakravarthy, S.: Sentinel: An object-oriented dbms with event-based rules. In: Peckham, J. (ed.) SIGMOD 1997: Proceedings of the 1997 ACM SIGMOD international conference on Management of data, pp. 572–575. ACM Press, New York (1997)CrossRefGoogle Scholar
  86. 86.
    Bry, F., Eckert, M.: Towards formal foundations of event queries and rules. In: Second Int. Workshop on Event-Driven Architecture, Processing and Systems EDA-PS (2007)Google Scholar
  87. 87.
    Miranker, D.P.: TREAT: a new and e_cient match algorithm for AI production systems. Morgan Kaufmann Publishers Inc., San Francisco (1990)Google Scholar
  88. 88.
    Batory, D.: The leaps algorithms. Technical report, Austin, TX, USA (1994)Google Scholar
  89. 89.
    Behrends, E., Fritzen, O., May, W., Schenk, F.: Combining eca rules with process algebras for the semantic web. In: RuleML (2006)Google Scholar
  90. 90.
    Luckham, D.C.: The Power of Events: An Introduction to Complex Event Processing in Distributed Enterprise Systems. Addison-Wesley, Reading (2002)Google Scholar
  91. 91.
    IBM Tivoli Enterprise Console - documentation (2001)Google Scholar
  92. 92.
    Sheers, K.: HP OpenView event correlation services. Hewlett Packard Journal 47.5, 31–42 (1996)Google Scholar
  93. 93.
    VERITAS NerveCentertm VERITAS Software (1999),
  94. 94.
    Yemini, S.A., Kliger, S., Mozes, E., Yemini, Y., Ohsie, D.: High speed and robust event correlation. IEEE Communications Magazine 34.5, 82–90 (1996)CrossRefGoogle Scholar
  95. 95.
    Common Base Event Infrastructure, IBM (2003)Google Scholar
  96. 96.
    Oracle8 Time Series Data Cartridge, White Paper (February 1998)Google Scholar
  97. 97.
    IBM Informix Time Series Data Blade Module, User Guide, V.4.0 (2001)Google Scholar
  98. 98.
    Shadri, P., Livny, M., Ramakrishnan, R.: Sequence Query Processing. In: SIGMOD, pp. 430–441 (1994)Google Scholar
  99. 99.
    Ramakrishnan, R., et al.: SQRL: Sorted Relational Query Language. In: SSDBM 1998, pp. 84–95 (1998)Google Scholar
  100. 100.
    Sadri, R., Zaniolo, C., Zarkesh, A., Adibi, J.: Optimization of Sequence Queries in Database Systems (2001)Google Scholar
  101. 101.
    Sadri, R.: Optimization of Sequence Queries in Database Systems., PhD Thesis, UCLA (2001)Google Scholar
  102. 102.
    Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S., Datar, M., Manku, G., Olston, C., Rosenstein, J., Varma, R.: Query Processing, Resource Management, and Approximation in a Data Stream Management System, Stanford (2002)Google Scholar
  103. 103.
    Aleri, (accessed August 2009)
  104. 104.
    Coral 8, (accessed August 2009)
  105. 105.
    Streambase, (accessed August 2009)
  106. 106.
    Esper, (accessed August 2009 -08-25)
  107. 107.
    Prova, (accessed August 2009)
  108. 108.
    Reaction RuleML, (accessed August 2009)
  109. 109.
    EventZero, (accessed August 2009)
  110. 110.
    AgentLogic, (accessed August 2009)
  111. 111.
    Hirzel, M., Andrade, H., Gedik, B., Kumar, V., Losa, G., Soulé, R., Wu, K.-L.: SPADE Language Specification, Published In: IBM Technical Report RC24760 in (2009)Google Scholar
  112. 112.
  113. 113.
  114. 114.
    RuleResponde, (accessed 2009)
  115. 115.
    W3C RIF, (accessed 2009)
  116. 116.
    Paschke, A., Boley, H.: Rules Capturing Event and Reactivity. Handbook of Research on Emerging Rule-Based Languages and Technologies: Open Solutions and Approaches (March 2009)Google Scholar
  117. 117.
    Braubach, L., Pokhar, A., Paschke, A.: Rule-Based Concepts as Foundation for Higher-Level Agent Architectures. Handbook of Research on Emerging Rule-Based Languages and Technologies: Open Solutions and Approaches (March 2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Adrian Paschke
    • 1
  • Alexander Kozlenkov
    • 2
  1. 1.Institut for Computer Science AG Corporate Semantic WebFreie Universitaet BerlinBerlinGermany
  2. 2.Betfair Ltd. London 

Personalised recommendations