Generation of Rules from Ontologies for High-Level Scene Interpretation

  • Wilfried Bohlken
  • Bernd Neumann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5858)


In this paper, a novel architecture for high-level scene interpretation is introduced, which is based on the generation of rules from an OWL-DL ontology. It is shown that the object-centered structure of the ontology can be transformed into a rule-based system in a native and systematic way. Furthermore the integration of constraints - which are essential for scene interpretation - is demonstrated with a temporal constraint net, and it is shown how parallel computing of alternatives can be realised. First results are given using examples of airport activities.


Description Logic Temporal Constraint Taxonomical Hierarchy Primitive Event Scene Interpretation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arens, M., Nagel, H.-H.: Behavioral knowledge representation for the understanding and creation of video sequences. In: Günter, A., Kruse, R., Neumann, B. (eds.) KI 2003. LNCS (LNAI), vol. 2821, pp. 149–163. Springer, Heidelberg (2003)Google Scholar
  2. 2.
    Arens, M., Ottlik, A., Nagel, H.-H.: Using behavioral knowledge for situated prediction of movements. In: Biundo, S., Frühwirth, T., Palm, G. (eds.) KI 2004. LNCS (LNAI), vol. 3238, pp. 141–155. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Borg, M., Thirde, D., Ferryman, J., Fusier, F., Valentin, V., Brémond, F., Thonnat, M.: A Real-Time Scene Understanding System for Airport Apron Monitoring. In: Proc. of IEEE International Conference on Computer Vision Systems (ICVS-06) (2006)Google Scholar
  4. 4.
    Bremond, F., Thonnat, M., Zuóniga, M.: Video Understanding Framework for Automatic Behavior Recognition. Behaviour Research Methods 3(38), 416–426 (2006)Google Scholar
  5. 5.
    Eriksson, H.: Using JessTab to Integrate Protégé and Jess. IEEE Intelligent Systems 18(2), 43–50 (2003)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Fusier, F., Valentin, V., Brémond, F., Thonnat, M., Borg, M., Thirde, D., Ferryman, J.: Video understanding for complex activity recognition. Machine Vision and Applications 18(3-4), 167–188 (2007)zbMATHCrossRefGoogle Scholar
  7. 7.
    Gerber, R., Nagel, H.-H.: Occurrence Extraction from Image Sequences of Road Traffic Scenes. In: van Gool, L., Schiele, B. (eds.) Proc. Workshop on Cognitive Vision, Switzerlan, pp. 1–8 (2002)Google Scholar
  8. 8.
    Georis, B., Maziére, M., Brémond, F., Thonnat, M.: Evaluation and Knowledge Representation Formalisms to Improve Video Understanding. In: Proc. ICVS 2006 (2006)Google Scholar
  9. 9.
    Friedman-Hill, E.: Jess in Action: Java Rule-Based Systems, Manning, Greenwich (2003)Google Scholar
  10. 10.
    Hotz, L., Neumann, B.: Scene Interpretation as a Configuration Task. In: Kuenstliche Intelligenz, vol. 3, pp. 59–65. BoettcherIT Verlag (2005)Google Scholar
  11. 11.
    Moeller, R., Neumann, B.: Ontology-based reasoning techniques for multimedia interpretation and retrieval. In: Kompatsiaris, Y., Hobson, P. (eds.) Semantic Multimedia and Ontologies: Theory and Applications, pp. 55–98. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Neumann, B.: Description of Time-Varying Scenes. In: Waltz, D. (ed.) Semantic Structures. Lawrence Erlbaum, Mahwah (1989)Google Scholar
  13. 13.
    Neumann, B., Möller, R.: On scene interpretation with description logics. In: Christensen, H.I., Nagel, H.-H. (eds.) Cognitive Vision Systems. LNCS, vol. 3948, pp. 247–275. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Neumann, B., Weiss, T.: Navigation through logic-based scene models for high-level scene interpretations. In: Proc. 3rd Int. Conf. on Computer Vision Systems (ICVS 2003), pp. 212–222 (2003)Google Scholar
  15. 15.
    Vila, L.: A survey on Temporal Reasoning in Artifical Intelligence. AI Communications 7(1), 4–28 (1994)MathSciNetGoogle Scholar
  16. 16.
    Van-Thinh, V., Brémond, F., Thonnat, M.: Automatic video interpretation: A recognition algorithm for temporal scenarios based on pre-compiled scenario models. In: Crowley, J.L., Piater, J.H., Vincze, M., Paletta, L. (eds.) ICVS 2003. LNCS, vol. 2626, pp. 523–533. Springer, Heidelberg (2003)Google Scholar
  17. 17.
    Zhu, S.-C., Mumford, D.: A Stochastic Grammar of Images. Now Publishers (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Wilfried Bohlken
    • 1
  • Bernd Neumann
    • 1
  1. 1.Cognitive Systems Laboratory, Department InformatikUniversity of HamburgHamburgGermany

Personalised recommendations