Protein Folding Simulation by Two-Stage Optimization

  • A. Dayem Ullah
  • L. Kapsokalivas
  • M. Mann
  • K. Steinhöfel
Part of the Communications in Computer and Information Science book series (CCIS, volume 51)


This paper proposes a two-stage optimization approach for protein folding simulation in the FCC lattice, inspired from the phenomenon of hydrophobic collapse. Given a protein sequence, the first stage of the approach produces compact protein structures with the maximal number of contacts among hydrophobic monomers, using the CPSP tools for optimal structure prediction in the HP model. The second stage uses those compact structures as starting points to further optimize the protein structure for the input sequence by employing simulated annealing local search and a 20 amino acid pairwise interactions energy function. Experiment results with PDB sequences show that compact structures produced by the CPSP tools are up to two orders of magnitude better, in terms of the pairwise energy function, than randomly generated ones. Also, initializing simulated annealing with these compact structures, yields better structures in fewer iterations than initializing with random structures. Hence, the proposed two-stage optimization outperforms a local search procedure based on simulated annealing alone.


Local Search Simulated Annealing Constraint Programming Local Search Method Local Search Procedure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aarts, E.H.L.: Local search in combinatorial optimization. Wiley, New York (1998)Google Scholar
  2. 2.
    Anfinsen, C.B.: Principles that govern the folding of protein chains. Science 181, 223–230 (1973)CrossRefGoogle Scholar
  3. 3.
    Albrecht, A.A., Skaliotis, A., Steinhöfel, K.: Stochastic protein folding simulation in the three-dimensional HP-model. Computational Biology and Chemistry 32(4), 248–255 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Backofen, R., Will, S.: A Constraint-Based Approach to Fast and Exact Structure Prediction in Three-Dimensional Protein Models. Constraints 11(1), 5–30 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Backofen, R., Will, S.: Optimally Compact Finite Sphere Packings - Hydrophobic Cores in the FCC. In: Amir, A., Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, pp. 257–272. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Böckenhauer, H.-J., Dayem Ullah, A.Z.M., Kapsokalivas, L., Steinhöfel, K.: A Local Move Set for Protein Folding in Triangular Lattice Models. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS (LNBI), vol. 5251, pp. 369–381. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Berrera, M., Molinari, H., Fogolari, F.: Amino acid empirical contact energy definitions for fold recognition in the space of contact maps. BMC Bioinformatics 4, 8 (2003)CrossRefGoogle Scholar
  8. 8.
    Cerny, V.: A thermodynamical approach to the travelling salesman problem: an efficient simulation algorithm. Journal of Optimization Theory and Applications 45, 41–51 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Crescenzi, P., Goldman, D., Papadimitriou, C., et al.: On the complexity of protein folding. Journal of Computational Biology 5, 423–465 (1998)CrossRefGoogle Scholar
  10. 10.
    Cheon, M., Chang, I.: Clustering of the Protein Design Alphabets by Using Hierarchical Self-Organizing Map. Journal of the Korean Physical Society 44, 1577–1580 (2004)Google Scholar
  11. 11.
    Dal Palú, A., Dovier, A., Fogolari, F.: Constraint Logic Programming approach to protein structure prediction. BMC Bioinformatics 5(1) (2004)Google Scholar
  12. 12.
    DeLano, W.L.: The PyMOL Molecular Graphics System. DeLano Scientific, Palo Alto, CA, USA (2002),
  13. 13.
    Dill, K.A., Bromberg, S., Yue, K., et al.: Principles of protein folding - A perspective from simple exact models. Protein Sci. 4, 561–602 (1995)CrossRefGoogle Scholar
  14. 14.
    Hajek, B.: Cooling schedules for optimal annealing. Mathem. Oper. Res. 13, 311–329 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Herráez, A.: Biomolecules in the Computer: Jmol to the rescue. Biochem. Educ. 34(4), 255–261 (2006)CrossRefGoogle Scholar
  16. 16.
    Kapsokalivas, L., Gan, X., Albrecht, A.A., Steinhöfel, K.: Two Local Search Methods for Protein Folding Simulation in the HP and the MJ Lattice Models. In: Proc. BIRD 2008. CCIS, vol. 13, pp. 167–179. Springer, Heidelberg (2008)Google Scholar
  17. 17.
    Kirkpatrick, S., Gelatt Jr., C., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Krippahl, L., Barahona, P.: PSICO: Solving Protein Structures with Constraint Programming and Optimization. Constraints 7(4-3), 317–331 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Lesh, N., Mitzenmacher, M., Whitesides, S.: A complete and effective move set for simplified protein folding. In: Proc. 7th Annual International Conference on Computational Biology, pp. 188–195. ACM Press, New York (2003)Google Scholar
  20. 20.
    Levinthal, C.: Are there pathways for protein folding? J. de Chimie Physique et de Physico-Chimie Biologique 65, 44–45 (1968)Google Scholar
  21. 21.
    Miyazawa, S., Jernigan, R.L.: Estimation of effective interresidue contact energies from protein crystal structures: quasi-chemical approximation. Macromolecules 18, 534–552 (1985)CrossRefGoogle Scholar
  22. 22.
    Mann, M., Will, S., Backofen, R.: CPSP-tools - Exact and Complete Algorithms for High-throughput 3D Lattice Protein Studies. BMC Bioinformatics 9 (2008)Google Scholar
  23. 23.
    Park, B.H., Levitt, M.: The complexity and accuracy of discrete state models of protein structure. Journal of Molecular Biology 249(2), 493–507 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • A. Dayem Ullah
    • 1
  • L. Kapsokalivas
    • 1
  • M. Mann
    • 2
  • K. Steinhöfel
    • 1
  1. 1.Department of Computer ScienceKing’s College LondonLondonUK
  2. 2.Bioinformatics GroupUniversity of FreiburgFreiburgGermany

Personalised recommendations